PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; PACMAD clade; Chloridoideae; Zoysieae; Zoysiinae; Zoysia
Family G2-like
Protein Properties Length: 165aa    MW: 18385.9 Da    PI: 10.0993
Description G2-like family protein
Gene Model
Gene Model ID Type Source Coding Sequence Nucleic Acid
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
                       G2-like   1 kprlrWtpeLHerFveaveqLGGsekAtPktilelmkvkgLtlehvkSHLQ 51 
                                   k rl Wt +LH++F+ av++L G ekA+Pk+ile+m+vk L +e+v+SHLQ 105 KSRLSWTRQLHHQFITAVDSL-GVEKAVPKKILEVMNVKHLRREQVASHLQ 154
                                   68*******************.***************************** PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5011014.647139IPR001789Signal transduction response regulator, receiver domain
SuperFamilySSF521721.61E-7154IPR011006CheY-like superfamily
Gene3DG3DSA: hitNo description
TIGRFAMsTIGR015574.1E-20105154IPR006447Myb domain, plants
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0000160Biological Processphosphorelay signal transduction system
GO:0048576Biological Processpositive regulation of short-day photoperiodism, flowering
GO:0003677Molecular FunctionDNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 165 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that acts as floral inducer to promote short-day (SD) flowering pathway. Activates Hd3a and other FT-like genes independently from Hd1. May also activate MADS-box transcription factors involved in flowering regulation. {ECO:0000269|PubMed:15078816}.
UniProtTranscriptional activator that acts as floral inducer to promote short-day (SD) flowering pathway. Activates HD3A and other FT-like genes independently from HD1. May also activate MADS-box transcription factors involved in flowering regulation (PubMed:15078816). Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. May directly activate some type-A response regulators in response to cytokinins (By similarity). {ECO:0000250|UniProtKB:Q940D0, ECO:0000269|PubMed:15078816}.
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Daily oscillation and diurnal expression in plants grown in short day (SD) but not in long day (LD) conditions. {ECO:0000269|PubMed:15078816}.
UniProtINDUCTION: Daily oscillation and diurnal expression in plants grown in short day (SD) but not in long day (LD) conditions. {ECO:0000269|PubMed:15078816}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_022679340.12e-69two-component response regulator EHD1
SwissprotQ7Y0W37e-55EHD1_ORYSI; Two-component response regulator EHD1
SwissprotQ7Y0W57e-55EHD1_ORYSJ; Two-component response regulator ORR30
TrEMBLA0A368SJM89e-68A0A368SJM8_SETIT; Uncharacterized protein
TrEMBLK4AM575e-68K4AM57_SETIT; Uncharacterized protein
STRINGSi039992m8e-69(Setaria italica)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G16110.13e-33response regulator 2
Publications ? help Back to Top
  1. Wu Y,Muench DG,Kim YT,Hwang YS,Okita TW
    Identification of polypeptides associated with an enriched cytoskeleton-protein body fraction from developing rice endosperm.
    Plant Cell Physiol., 1998. 39(12): p. 1251-7
  2. Rice Chromosome 10 Sequencing Consortium
    In-depth view of structure, activity, and evolution of rice chromosome 10.
    Science, 2003. 300(5625): p. 1566-9
  3. Kim SL,Lee S,Kim HJ,Nam HG,An G
    OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a.
    Plant Physiol., 2007. 145(4): p. 1484-94
  4. Park SJ, et al.
    Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod.
    Plant J., 2008. 56(6): p. 1018-29
  5. Li D, et al.
    Functional characterization of rice OsDof12.
    Planta, 2009. 229(6): p. 1159-69
  6. Takahashi Y,Teshima KM,Yokoi S,Innan H,Shimamoto K
    Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(11): p. 4555-60
  7. Saito H, et al.
    Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.).
    Theor. Appl. Genet., 2009. 119(2): p. 315-23
  8. Andrés F,Galbraith DW,Talón M,Domingo C
    Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice.
    Plant Physiol., 2009. 151(2): p. 681-90
  9. Higgins JA,Bailey PC,Laurie DA
    Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses.
    PLoS ONE, 2010. 5(4): p. e10065
  10. Itoh H,Nonoue Y,Yano M,Izawa T
    A pair of floral regulators sets critical day length for Hd3a florigen expression in rice.
    Nat. Genet., 2010. 42(7): p. 635-8
  11. Yan WH, et al.
    A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice.
    Mol Plant, 2011. 4(2): p. 319-30
  12. Matsubara K, et al.
    Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering.
    Plant J., 2011. 66(4): p. 603-12
  13. Li W,Han Y,Tao F,Chong K
    Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice.
    J. Plant Physiol., 2011. 168(15): p. 1837-43
  14. Bian XF, et al.
    Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1.
    Plant Cell Rep., 2011. 30(12): p. 2243-54
  15. Kikuchi R,Kawahigashi H,Oshima M,Ando T,Handa H
    The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.
    J. Exp. Bot., 2012. 63(2): p. 773-84
  16. Saito H, et al.
    Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions.
    Plant Cell Physiol., 2012. 53(4): p. 717-28
  17. Song Y,Gao Z,Luan W
    Interaction between temperature and photoperiod in regulation of flowering time in rice.
    Sci China Life Sci, 2012. 55(3): p. 241-9
  18. Zhao J, et al.
    OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering.
    PLoS ONE, 2012. 7(8): p. e43705
  19. Dai X, et al.
    LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).
    J Integr Plant Biol, 2012. 54(10): p. 790-9
  20. Yang J, et al.
    OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice.
    Plant J., 2013. 73(4): p. 566-78
  21. Wu W, et al.
    Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(8): p. 2775-80
  22. Kwon CT, et al.
    Natural variation in Early flowering1 contributes to early flowering in japonica rice under long days.
    Plant Cell Environ., 2014. 37(1): p. 101-12
  23. Kovi MR, et al.
    Expression patterns of photoperiod and temperature regulated heading date genes in Oryza sativa.
    Comput Biol Chem, 2013. 45: p. 36-41
  24. Hori K, et al.
    Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response.
    Plant J., 2013. 76(1): p. 36-46
  25. Zhang K, et al.
    Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.
    J. Biotechnol., 2013. 168(1): p. 7-14
  26. Kim SL,Choi M,Jung KH,An G
    Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar.
    J. Exp. Bot., 2013. 64(14): p. 4169-82
  27. Duan M, et al.
    Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers.
    Rice (N Y), 2013. 6(1): p. 21
  28. Hu S, et al.
    A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7.
    Rice (N Y), 2013. 6(1): p. 24
  29. Dong YB, et al.
    Genome-wide multilocus analysis of intraspecific differentiation in Oryza rufipogon Griff. from China and the influence of introgression from O. sativa L.
    Genet. Mol. Res., 2013. 12(4): p. 6103-19
  30. Sugano SS, et al.
    CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
    Plant Cell Physiol., 2014. 55(3): p. 475-81
  31. Naranjo L,Talón M,Domingo C
    Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes.
    BMC Genomics, 2014. 15: p. 101
  32. Chen J, et al.
    Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice.
    Sci Rep, 2014. 4: p. 4263
  33. Xu Q, et al.
    The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice.
    Mol. Breed., 2014. 33: p. 813-819
  34. Matsubara K,Hori K,Ogiso-Tanaka E,Yano M
    Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice.
    Front Plant Sci, 2014. 5: p. 193
  35. Yang S,Weers BD,Morishige DT,Mullet JE
    CONSTANS is a photoperiod regulated activator of flowering in sorghum.
    BMC Plant Biol., 2014. 14: p. 148
  36. Cai Y, et al.
    Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice.
    PLoS ONE, 2014. 9(7): p. e102529
  37. Hu Q,Guo W,Gao Y,Tang R,Li D
    Reference gene selection for real-time RT-PCR normalization in rice field eel (Monopterus albus) during gonad development.
    Fish Physiol. Biochem., 2014. 40(6): p. 1721-30
  38. Gao H, et al.
    Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(46): p. 16337-42
  39. Liu X, et al.
    The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time.
    Front Plant Sci, 2014. 5: p. 591
  40. Zhang L, et al.
    Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice.
    Sci Rep, 2015. 5: p. 7663
  41. Sun M,Lu MX,Tang XT,Du YZ
    Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).
    PLoS ONE, 2015. 10(1): p. e0115979
  42. Gómez-Ariza J, et al.
    Loss of floral repressor function adapts rice to higher latitudes in Europe.
    J. Exp. Bot., 2015. 66(7): p. 2027-39
  43. Han SH,Yoo SC,Lee BD,An G,Paek NC
    Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod.
    Plant Cell Environ., 2015. 38(12): p. 2527-40
  44. Jin J, et al.
    MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.
    Plant Physiol., 2015. 168(4): p. 1275-85
  45. Zhao J, et al.
    Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).
    New Phytol., 2015. 208(3): p. 936-48
  46. Lee YS,Lee DY,Cho LH,An G
    Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens.
    Rice (N Y), 2014. 7(1): p. 31
  47. Kim SK, et al.
    OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice.
    Planta, 2016. 243(3): p. 563-76
  48. Wei FJ, et al.
    Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice.
    Plant Sci., 2016. 242: p. 187-194
  49. An XK,Hou ML,Liu YD
    Reference Gene Selection and Evaluation for Gene Expression Studies Using qRT-PCR in the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae).
    J. Econ. Entomol., 2016. 109(2): p. 879-86
  50. Liu B, et al.
    SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa).
    New Phytol., 2016. 210(2): p. 577-88
  51. Jeong HJ,Yang J,Cho LH,An G
    OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days.
    Plant Cell Rep., 2016. 35(4): p. 905-20
  52. Cho LH,Yoon J,Pasriga R,An G
    Homodimerization of Ehd1 Is Required to Induce Flowering in Rice.
    Plant Physiol., 2016. 170(4): p. 2159-71
  53. Tan J, et al.
    OsCOL10, a CONSTANS-Like Gene, Functions as a Flowering Time Repressor Downstream of Ghd7 in Rice.
    Plant Cell Physiol., 2016. 57(4): p. 798-812
  54. Zhang C, et al.
    A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice.
    Plant Physiol., 2016. 171(1): p. 334-43
  55. Sun X, et al.
    The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.
    PLoS Genet., 2016. 12(3): p. e1005927
  56. Nemoto Y,Nonoue Y,Yano M,Izawa T
    Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7.
    Plant J., 2016. 86(3): p. 221-33
  57. Bai B, et al.
    OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice.
    Plant Sci., 2016. 247: p. 25-34
  58. Galbiati F, et al.
    Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice.
    Plant Cell Environ., 2016. 39(9): p. 1982-93
  59. Shibaya T, et al.
    Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice.
    Plant Cell Physiol., 2016. 57(9): p. 1828-38
  60. Sheng P, et al.
    A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice.
    Plant Mol. Biol., 2016. 92(1-2): p. 209-22
  61. Wang J, et al.
    Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time.
    FEBS Lett., 2016. 590(19): p. 3385-3396
  62. Liu H, et al.
    CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.
    Biochem. Biophys. Res. Commun., 2016. 479(2): p. 173-178
  63. Han Z,Zhang B,Zhao H,Ayaad M,Xing Y
    Genome-Wide Association Studies Reveal that Diverse Heading Date Genes Respond to Short and Long Day Lengths between Indica and Japonica Rice.
    Front Plant Sci, 2016. 7: p. 1270
  64. Kong DY, et al.
    Research progress of photoperiod regulated genes on flowering time in rice.
    Yi Chuan, 2016. 38(6): p. 532-542
  65. Sun B, et al.
    Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice (Oryza sativa L.).
    Theor. Appl. Genet., 2017. 130(1): p. 247-258