PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; PACMAD clade; Chloridoideae; Zoysieae; Zoysiinae; Zoysia
Family bHLH
Protein Properties Length: 199aa    MW: 22112.4 Da    PI: 7.9627
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence Nucleic Acid
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
                           HLH  4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55
                                  +h ++Er+RR+++N+ +  Lr+l P +   + k+ + a+i   A+++I++Lq  2 SHIAVERNRRRQMNEHLKVLRSLTPAL---YIKRGDQASIIGGAIDFIRELQ 50
                                  89*************************...9********************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000831.09E-11154No hitNo description
PROSITE profilePS5088814.932149IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474593.53E-16276IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000108.3E-10250IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:, basic helix-loop-helix (bHLH) domain
SMARTSM003535.9E-12455IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009913Biological Processepidermal cell differentiation
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 199 aa     Download sequence    Send to blast
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankKJ7269697e-46KJ726969.1 Zea mays clone pUT3670 bHLH transcription factor (bHLH82) gene, partial cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_025815760.13e-90transcription factor MUTE
SwissprotQ9M8K65e-66MUTE_ARATH; Transcription factor MUTE
TrEMBLA0A2T7DSX42e-89A0A2T7DSX4_9POAL; Uncharacterized protein
STRINGSi004438m3e-84(Setaria italica)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G06120.15e-57bHLH family protein
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
  3. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
  4. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
  5. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
  6. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
  7. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
  8. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
  9. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
  10. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
  11. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5