PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Sopim09g089930.0.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum; Lycopersicon
Family ERF
Protein Properties Length: 241aa    MW: 27030.8 Da    PI: 4.7291
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Sopim09g089930.0.1genomeCSHLView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP260.73.4e-1990141256
                 AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkklege 56 
                          y+GVr+++ +g+++AeIrd + ng   r++lg+f++ae+Aa a+++a+ +++g+
  Sopim09g089930.0.1  90 SYRGVRRRP-WGKFAAEIRDSTRNG--VRVWLGTFDSAEDAALAYDQAAFSMRGN 141
                         69*******.**********44465..*************************995 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000181.92E-2889149No hitNo description
Gene3DG3DSA:3.30.730.109.0E-3190149IPR001471AP2/ERF domain
PfamPF008471.2E-1390140IPR001471AP2/ERF domain
PROSITE profilePS5103223.11790148IPR001471AP2/ERF domain
SuperFamilySSF541719.15E-2390150IPR016177DNA-binding domain
SMARTSM003801.1E-3790154IPR001471AP2/ERF domain
PRINTSPR003672.2E-1091102IPR001471AP2/ERF domain
PRINTSPR003672.2E-10114130IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 241 aa     Download sequence    Send to blast
MDSSSSSSQF FYSMNSDLNS SDSSYEWSNF NTQSYLPFNV NDSEEMLLFG VLNAAHEETT  60
SETVTSHRVK EEEVTSESEV IEAIPAKEKS YRGVRRRPWG KFAAEIRDST RNGVRVWLGT  120
FDSAEDAALA YDQAAFSMRG NSAILNFPVE TVRDSLRDMK CHVDDDCSPV VALKKRHSMR  180
KRSTNSKKVN SISKVVREVK MENVNNVVVF EDLGADYLEQ LLSSSSSDQS SCDATYFSPW  240
*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
2gcc_A1e-3086149164ATERF1
3gcc_A1e-3086149164ATERF1
5wx9_A3e-3083150774Ethylene-responsive transcription factor ERF096
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtActs as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression during the plant development, and/or mediated by stress factors and by components of stress signal transduction pathways. Seems to be a key integrator of ethylene and jasmonate signals in the regulation of ethylene/jasmonate-dependent defenses. Can mediate resistance to necrotizing fungi (Botrytis cinerea and Plectosphaerella cucumerina) and to soil borne fungi (Fusarium oxysporum conglutinans and Fusiarium oxysporum lycopersici), but probably not to necrotizing bacteria (Pseudomonas syringae tomato). {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by Pseudomonas syringae tomato (both virulent and avirulent avrRpt2 strains), independently of PAD4. Ethylene induction is completely dependent on functional ETHYLENE-INSENSITIVE2 (EIN2), ETHYLENE-INSENSITIVE3 (EIN3), which is itself a transcription factor and CORONATIVE-INSENSITIVE1 (COI1) proteins. Induction by jasmonate, B.cinerea or F.oxysporum as well as the synergistic induction by ethylene and jasmonate requires EIN2 and COI1. Induction by methyl jasmonate (MeJA) is independent of JAR1. Induction by salicylic acid (SA) is dependent on NPR1 but not on PAD4. Seems not to be induced by Alternaria brassicicola. {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4942010.0AF494201.1 Lycopersicon esculentum transcription factor TSRF1 (TSRF1) mRNA, complete cds.
GenBankHG9755210.0HG975521.1 Solanum lycopersicum chromosome ch09, complete genome.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001234818.11e-177ethylene responsive element binding protein
SwissprotQ8LDC81e-69ERF92_ARATH; Ethylene-responsive transcription factor 1B
TrEMBLQ8H6S91e-176Q8H6S9_SOLLC; Transcription factor TSRF1
STRINGSolyc09g089930.1.11e-177(Solanum lycopersicum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA21241165
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G23240.11e-48ethylene response factor 1
Publications ? help Back to Top
  1. Zarate SI,Kempema LA,Walling LL
    Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.
    Plant Physiol., 2007. 143(2): p. 866-75
    [PMID:17189328]
  2. Vahabi K,Camehl I,Sherameti I,Oelm├╝ller R
    Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots.
    Plant Signal Behav, 2013. 8(11): p. e26301
    [PMID:24047645]
  3. Kim HG, et al.
    GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling.
    Plant Physiol., 2013. 163(4): p. 1776-91
    [PMID:24170202]
  4. Li J,Jia H,Wang J
    cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots.
    Plant Cell Rep., 2014. 33(3): p. 447-59
    [PMID:24306353]
  5. Zhong S, et al.
    Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20
    [PMID:24599595]
  6. Kim HG, et al.
    GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis.
    FEBS Lett., 2014. 588(9): p. 1652-8
    [PMID:24631536]
  7. Schellingen K, et al.
    Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression.
    BMC Plant Biol., 2014. 14: p. 214
    [PMID:25082369]
  8. Ellouzi H, et al.
    A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity.
    Planta, 2014. 240(6): p. 1299-317
    [PMID:25156490]
  9. Nguyen AH, et al.
    Loss of Arabidopsis 5'-3' Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress.
    Plant Cell Physiol., 2015. 56(9): p. 1762-72
    [PMID:26136597]
  10. Cheng MC,Kuo WC,Wang YM,Chen HY,Lin TP
    UBC18 mediates ERF1 degradation under light-dark cycles.
    New Phytol., 2017. 213(3): p. 1156-1167
    [PMID:27787902]
  11. Timmermann T, et al.
    Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance.
    Mol. Plant Microbe Interact., 2017. 30(3): p. 215-230
    [PMID:28118091]
  12. Yu Y,Huang R
    Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 57
    [PMID:28174592]
  13. Lestari R, et al.
    Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation.
    Plant Biotechnol. J., 2018. 16(1): p. 322-336
    [PMID:28626940]
  14. Dinolfo MI,Casta├▒ares E,Stenglein SA
    Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways.
    Fungal Biol, 2017. 121(10): p. 841-848
    [PMID:28889908]