PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Sopen08g031370.1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum; Lycopersicon
Family bHLH
Protein Properties Length: 204aa    MW: 22839.3 Da    PI: 10.1012
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Sopen08g031370.1genomespennView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
               HLH  3 rahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54
                      ++h e+Er+RR+++N++f  Lr+++P+       K++Ka+ L  Av YI++L
                      589************************6.....5****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF474591.31E-172591IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088816.9333483IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.21E-133788No hitNo description
PfamPF000103.3E-113783IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:, basic helix-loop-helix (bHLH) domain
SMARTSM003531.5E-164089IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 204 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5gnj_A4e-253887857Transcription factor MYC2
5gnj_B4e-253887857Transcription factor MYC2
5gnj_E4e-253887857Transcription factor MYC2
5gnj_F4e-253887857Transcription factor MYC2
5gnj_G4e-253887857Transcription factor MYC2
5gnj_I4e-253887857Transcription factor MYC2
5gnj_M4e-253887857Transcription factor MYC2
5gnj_N4e-253887857Transcription factor MYC2
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the promoters of the transcription factors PLETHORA1 (PLT1) and PLT2 and represses their expression. Negative regulator of blue light-mediated photomorphogenic growth and blue- and far-red-light regulated gene expression. Activates multiple TIFY/JAZ promoters. Positive regulator of lateral root formation. Regulates sesquiterpene biosynthesis. Subjected to proteasome-dependent proteolysis. The presence of the destruction element (DE) involved in turnover is required for the function to regulate gene transcription. {ECO:0000269|PubMed:12509522, ECO:0000269|PubMed:15208388, ECO:0000269|PubMed:15923349, ECO:0000269|PubMed:21321051, ECO:0000269|PubMed:21335373, ECO:0000269|PubMed:21954460, ECO:0000269|PubMed:22669881, ECO:0000269|PubMed:23142764, ECO:0000269|PubMed:23593022, ECO:0000269|PubMed:23943862, ECO:0000269|PubMed:9368419}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Detected early after abscisic acid (ABA) treatment or after dehydration and high-salt stresses. Induced by UV treatment. Up-regulated by methyl jasmonate and herbivory. {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:15208388, ECO:0000269|PubMed:23593022, ECO:0000269|PubMed:23943862, ECO:0000269|PubMed:9368419}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankHG9754470.0HG975447.1 Solanum pennellii chromosome ch08, complete genome.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_015084432.21e-145transcription factor bHLH14-like
SwissprotQ392042e-46MYC2_ARATH; Transcription factor MYC2
TrEMBLA0A3Q7HUW31e-130A0A3Q7HUW3_SOLLC; Uncharacterized protein
STRINGSolyc08g083170.1.11e-131(Solanum lycopersicum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G32640.17e-49bHLH family protein
Publications ? help Back to Top
  1. Zheng XY, et al.
    Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
    Cell Host Microbe, 2012. 11(6): p. 587-96
  2. Guo R, et al.
    Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.
    J. Exp. Bot., 2013. 64(18): p. 5707-19
  3. Gangappa SN,Srivastava AK,Maurya JP,Ram H,Chattopadhyay S
    Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development.
    Mol Plant, 2013. 6(6): p. 1758-68
  4. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  5. Vos IA, et al.
    Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid.
    Front Plant Sci, 2013. 4: p. 539
  6. Liu N,Ding Y,Fromm M,Avramova Z
    Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes.
    Nucleic Acids Res., 2014. 42(9): p. 5556-66
  7. Chico JM, et al.
    Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis.
    Plant Cell, 2014. 26(5): p. 1967-1980
  8. Karumuri S,Bandopadhyay R
    In silico analysis of the structure and interaction of COP1 protein of Arabidopsis thaliana.
    Indian J. Biochem. Biophys., 2014. 51(5): p. 343-9
  9. Roos J,Bejai S,Mozūraitis R,Dixelius C
    Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.
    Plant J., 2015. 81(4): p. 572-85
  10. Yamada Y,Motomura Y,Sato F
    CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells.
    Plant Cell Physiol., 2015. 56(5): p. 1019-30
  11. Kazan K
    Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Trends Plant Sci., 2015. 20(4): p. 219-29
  12. Lenka SK, et al.
    Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4.
    Front Plant Sci, 2015. 6: p. 115
  13. Carvalhais LC, et al.
    Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes.
    Mol. Plant Microbe Interact., 2015. 28(9): p. 1049-58
  14. Gasperini D, et al.
    Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth.
    PLoS Genet., 2015. 11(6): p. e1005300
  15. Qi T, et al.
    Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.
    Plant Cell, 2015. 27(6): p. 1634-49
  16. Wang C, et al.
    Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Plant J., 2015. 83(6): p. 1019-33
  17. de Ollas C,Arbona V,Gómez-Cadenas A
    Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions.
    Plant Signal Behav, 2015. 10(12): p. e1078953
  18. Yastreb TO,Kolupayev YE,Shvidenko AA,Lugovaya AA,Dmitriev AP
    [Salt Stress Response in Arabidopsis thaliana Plants with Defective Jasmonate Signaling].
    Prikl. Biokhim. Mikrobiol., 2015 Jul-Aug. 51(4): p. 412-6
  19. Liu Z, et al.
    A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.
    Mol Plant, 2015. 8(12): p. 1751-65
  20. Zhu X, et al.
    Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Plant J., 2015. 84(3): p. 597-610
  21. de Torres Zabala M, et al.
    Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection.
    New Phytol., 2016. 209(3): p. 1120-34
  22. Kaurilind E,Xu E,Brosché M
    A genetic framework for H2O2 induced cell death in Arabidopsis thaliana.
    BMC Genomics, 2015. 16: p. 837
  23. Yu J, et al.
    JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis.
    J. Exp. Bot., 2016. 67(3): p. 751-62
  24. Lu M, et al.
    AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.
    J. Exp. Bot., 2016. 67(3): p. 809-19
  25. Chen X,Huang H,Qi T,Liu B,Song S
    New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in arabidopsis.
    Plant Signal Behav, 2016. 11(2): p. e1135280
  26. Schmiesing A,Emonet A,Gouhier-Darimont C,Reymond P
    Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.
    Plant Physiol., 2016. 170(4): p. 2432-43
  27. Liu N,Avramova Z
    Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.
    Epigenetics Chromatin, 2016. 9: p. 8
  28. Takagi H, et al.
    Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner.
    J. Exp. Bot., 2016. 67(8): p. 2519-2532
  29. Mira MM, et al.
    Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin.
    J. Exp. Bot., 2016. 67(8): p. 2231-46
  30. Valenzuela CE, et al.
    Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.
    J. Exp. Bot., 2016. 67(14): p. 4209-20
  31. Aleman F, et al.
    An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling.
    Sci Rep, 2016. 6: p. 28941
  32. An JP, et al.
    The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple.
    Plant Physiol. Biochem., 2016. 108: p. 24-31
  33. Gao C, et al.
    MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis.
    Plant Physiol. Biochem., 2016. 108: p. 63-70
  34. Liu N,Staswick PE,Avramova Z
    Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.
    Plant Cell Environ., 2016. 39(11): p. 2515-2529
  35. Allu AD,Brotman Y,Xue GP,Balazadeh S
    Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection.
    EMBO Rep., 2016. 17(11): p. 1578-1589
  36. Raya-González J,Velázquez-Becerra C,Barrera-Ortiz S,López-Bucio J,Valencia-Cantero E
    N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.
    Protoplasma, 2017. 254(3): p. 1399-1410
  37. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
  38. Yuan LB, et al.
    Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis.
    Plant Physiol., 2017. 173(3): p. 1864-1880
  39. Le Hir R, et al.
    AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana.
    Physiol Plant, 2017. 160(3): p. 312-327
  40. Li K,Yang F,Miao Y,Song CP
    Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6.
    Plant Signal Behav, 2017. 12(5): p. e1321188
  41. Lian TF,Xu YP,Li LF,Su XD
    Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA.
    Cell Rep, 2017. 19(7): p. 1334-1342
  42. Yao L,Zheng Y,Zhu Z
    Jasmonate suppresses seedling soil emergence in Arabidopsis thaliana.
    Plant Signal Behav, 2017. 12(6): p. e1330239
  43. Jeong JS,Jung C,Seo JS,Kim JK,Chua NH
    The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses.
    Plant Cell, 2017. 29(6): p. 1406-1424
  44. Huang CF, et al.
    Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(33): p. E6884-E6891
  45. Wang H, et al.
    The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis.
    Mol Plant, 2017. 10(11): p. 1461-1464
  46. Jang G, et al.
    Antagonistic interaction between jasmonic acid and cytokinin in xylem development.
    Sci Rep, 2017. 7(1): p. 10212
  47. Song S, et al.
    MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses.
    Plant Cell Physiol., 2017. 58(10): p. 1752-1763
  48. Ullah A,Sun H,Yang X,Zhang X
    A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Physiol Plant, 2018. 162(4): p. 439-454
  49. Zhai Q,Li L,An C,Li C
    Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals.
    Plant Signal Behav, 2018. 13(5): p. e1403709
  50. Li B, et al.
    Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis.
    Plant Cell, 2018. 30(1): p. 178-195
  51. Giri MK,Gautam JK,Rajendra Prasad VB,Chattopadhyay S,Nandi AK
    Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling.
    J. Biosci., 2017. 42(3): p. 501-508
  52. Han X, et al.
    Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons.
    Plant Physiol., 2018. 176(4): p. 2871-2885
  53. Li X,Yang R,Chen H
    The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA.
    PLoS ONE, 2018. 13(3): p. e0193458