PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID 676745738
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Sisymbrieae; Sisymbrium
Family ERF
Protein Properties Length: 214aa    MW: 23730.6 Da    PI: 4.8641
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
676745738genomeVEGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP259.77e-194999155
        AP2  1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
               + y+GVr++  +g+Wv+e+r+p   +k+ r++lg+f tae+Aa+a++ a+ +l+g
  676745738 49 PVYRGVRRRN-SGKWVCEVREP---NKKSRIWLGTFQTAEMAARAHDVAAIALRG 99
               68*****888.8******9998...347*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF008477.5E-144999IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.109.5E-3350109IPR001471AP2/ERF domain
SuperFamilySSF541718.5E-2250109IPR016177DNA-binding domain
PROSITE profilePS5103222.44550107IPR001471AP2/ERF domain
SMARTSM003808.9E-3150113IPR001471AP2/ERF domain
PRINTSPR003671.9E-95162IPR001471AP2/ERF domain
CDDcd000185.85E-3251109No hitNo description
PRINTSPR003671.9E-97389IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009414Biological Processresponse to water deprivation
GO:0009631Biological Processcold acclimation
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 214 aa     Download sequence    Send to blast
MSSFSAFSEM FGSEYESSVT LGSDYCPTLA ASCPKKPAGR KKFRETRHPV YRGVRRRNSG  60
KWVCEVREPN KKSRIWLGTF QTAEMAARAH DVAAIALRGR SACLNFADSA WRLRIPETTC  120
AKDIQKAAAE AALACQGEMN DTTTDHGLDI EETMVEAIVT AEESEGFYMD EESIFGMPAL  180
LANMAEGMLL PPPSVQWGHH NDYDGDDDVS LWSY
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5wx9_A4e-15481061271Ethylene-responsive transcription factor ERF096
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00453DAPTransfer from AT4G25480Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMap676745738
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress. Positively regulated by the transcription factor ICE1. Subject to degradation by the 26S proteasome pathway in freezing conditions (PubMed:28344081). {ECO:0000269|PubMed:28344081, ECO:0000269|PubMed:9707537, ECO:0000269|PubMed:9735350, ECO:0000269|PubMed:9952441}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankEU1594110.0EU159411.1 Thlaspi arvense cold responsive transcription factor (CBF) gene, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_006413301.11e-131dehydration-responsive element-binding protein 1B
SwissprotQ9M0L01e-127DRE1A_ARATH; Dehydration-responsive element-binding protein 1A
TrEMBLA8IDZ31e-131A8IDZ3_THLAR; Cold responsive transcription factor
STRINGBostr.7867s0359.1.p1e-132(Boechera stricta)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM35528187
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G25480.11e-129dehydration response element B1A
Publications ? help Back to Top
  1. Hong B, et al.
    Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress.
    Plant Mol. Biol., 2009. 70(3): p. 231-40
    [PMID:19234675]
  2. Vadez V,Rao JS,Bhatnagar-Mathur P,Sharma KK
    DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.
    Plant Biol (Stuttg), 2013. 15(1): p. 45-52
    [PMID:22672619]
  3. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  4. Su Z, et al.
    Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
    Plant Cell, 2013. 25(10): p. 3785-807
    [PMID:24179129]
  5. Xu C,Wang M,Zhou L,Quan T,Xia G
    Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.
    PLoS ONE, 2013. 8(11): p. e79618
    [PMID:24223981]
  6. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  7. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  8. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  9. Sarkar T,Thankappan R,Kumar A,Mishra GP,Dobaria JR
    Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses.
    PLoS ONE, 2014. 9(12): p. e110507
    [PMID:25545786]
  10. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  11. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  12. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  13. Paul S,Gayen D,Datta SK,Datta K
    Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress.
    Plant Sci., 2015. 234: p. 133-43
    [PMID:25804816]
  14. Sazegari S,Niazi A,Ahmadi FS
    A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes.
    Bioinformation, 2015. 11(2): p. 101-6
    [PMID:25848171]
  15. Alvarez-Gerding X,Espinoza C,Inostroza-Blancheteau C,Arce-Johnson P
    Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.
    Plant Physiol. Biochem., 2015. 92: p. 71-80
    [PMID:25914135]
  16. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  17. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  18. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  19. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  20. Chan Z, et al.
    RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    New Phytol., 2016. 209(4): p. 1527-39
    [PMID:26522658]
  21. Shah SH,Ali S,Qureshi AA,Zia MA,Ali GM
    WITHDRAWN: Physiological and biochemical characterization of tomato transgenic lines overexpressing Arabidopsis thaliana cold responsive-element binding factor 3 (AtCBF3) gene under chilling stress.
    J. Biotechnol., 2016.
    [PMID:26732415]
  22. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  23. Qiao Z,Li CL,Zhang W
    WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 91(1-2): p. 53-65
    [PMID:26820136]
  24. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  25. Kazama D, et al.
    Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis.
    Plants (Basel), 2013. 2(4): p. 769-85
    [PMID:27137403]
  26. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  27. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  28. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  29. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  30. Wei T, et al.
    Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.
    Plant Cell Physiol., 2016. 57(8): p. 1593-609
    [PMID:27485523]
  31. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  32. An D, et al.
    Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.
    Front Plant Sci, 2016. 7: p. 1866
    [PMID:27999588]
  33. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  34. Zhou M,Chen H,Wei D,Ma H,Lin J
    Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature.
    Sci Rep, 2017. 7: p. 39819
    [PMID:28051152]
  35. Liu Z, et al.
    Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.
    Mol. Cell, 2017. 66(1): p. 117-128.e5
    [PMID:28344081]
  36. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  37. Shen PC,Hour AL,Liu LD
    Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.
    Bot Stud, 2017. 58(1): p. 22
    [PMID:28510204]
  38. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  39. Yang L, et al.
    Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.
    Plant Physiol. Biochem., 2017. 117: p. 1-11
    [PMID:28575641]
  40. Shah SH, et al.
    Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter.
    Environ Sci Pollut Res Int, 2017. 24(22): p. 18536-18553
    [PMID:28646315]
  41. Li A, et al.
    Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.
    Front Plant Sci, 2017. 8: p. 1647
    [PMID:28983312]
  42. Du X,Jin Z,Liu D,Yang G,Pei Y
    Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 120: p. 112-119
    [PMID:29024849]
  43. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  44. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  45. Huang KC,Lin WC,Cheng WH
    Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis.
    BMC Plant Biol., 2018. 18(1): p. 40
    [PMID:29490615]
  46. Wei T, et al.
    Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.
    Int J Mol Sci, 2018.
    [PMID:29534548]