PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Rsa1.0_49759.1_g00001.1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Raphanus
Family ERF
Protein Properties Length: 121aa    MW: 13605.4 Da    PI: 10.7122
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Rsa1.0_49759.1_g00001.1genomeRGDView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
                      AP2   1 sgykGVrwdkkrgrWvAeIrdpsengkr.krfslgkfgtaeeAakaaiaa 49 
                              + ++GVr++  +g+WvAeIr+p   + r  r +lg+f tae+Aa a+++a
                              579****998.**********8...3.35******************997 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF008471.8E-1077121IPR001471AP2/ERF domain
CDDcd000181.11E-1977121No hitNo description
SMARTSM003801.3E-1478121IPR001471AP2/ERF domain
PROSITE profilePS5103218.54578121IPR001471AP2/ERF domain
SuperFamilySSF541716.54E-1578120IPR016177DNA-binding domain
Gene3DG3DSA:3.30.730.101.5E-2278121IPR001471AP2/ERF domain
PRINTSPR003675.3E-107990IPR001471AP2/ERF domain
PRINTSPR003675.3E-10101117IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 121 aa     Download sequence    Send to blast
Nucleic Localization Signal ? help Back to Top
No. Start End Sequence
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates high salinity- and dehydration-inducible transcription. {ECO:0000269|PubMed:11798174}.
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt and drought stresses. {ECO:0000269|PubMed:10809011, ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:9707537}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_020876006.15e-58dehydration-responsive element-binding protein 2A
SwissprotO821326e-55DRE2A_ARATH; Dehydration-responsive element-binding protein 2A
TrEMBLA0A397ZUC28e-64A0A397ZUC2_BRACM; Uncharacterized protein
STRINGfgenesh2_kg.6__469__AT5G05410.12e-57(Arabidopsis lyrata)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G05410.29e-51DRE-binding protein 2A
Publications ? help Back to Top
  1. Djafi N, et al.
    The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase.
    Front Plant Sci, 2013. 4: p. 307
  2. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  3. Ruelland E,Djafi N,Zachowski A
    The phosphoinositide dependent-phospholipase C pathway differentially controls the basal expression of DREB1 and DREB2 genes.
    Plant Signal Behav, 2013. 8(10): p. doi: 10.4161/psb.26895
  4. Cha JY, et al.
    NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought.
    Plant Physiol. Biochem., 2014. 80: p. 184-91
  5. Sadhukhan A, et al.
    VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis.
    Planta, 2014. 240(3): p. 645-64
  6. Kong D,Li M,Dong Z,Ji H,Li X
    Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses.
    Plant Cell Rep., 2015. 34(3): p. 395-410
  7. Yamauchi Y,Kunishima M,Mizutani M,Sugimoto Y
    Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression.
    Sci Rep, 2015. 5: p. 8030
  8. Lim CW, et al.
    The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response.
    Plant Cell Physiol., 2015. 56(5): p. 930-42
  9. Li YJ,Wang B,Dong RR,Hou BK
    AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation.
    Plant Sci., 2015. 236: p. 157-67
  10. Shafeinie A,Mohammadi V,Alizadeh H,Zali AA
    Overexpression of Arabidopsis Dehydration-Responsive Element-Binding protein 2A confers tolerance to salinity stress to transgenic canola.
    Pak. J. Biol. Sci., 2014. 17(5): p. 619-29
  11. Virk N, et al.
    Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.
    PLoS ONE, 2015. 10(7): p. e0133975
  12. Lee SY,Boon NJ,Webb AA,Tanaka RJ
    Synergistic Activation of RD29A Via Integration of Salinity Stress and Abscisic Acid in Arabidopsis thaliana.
    Plant Cell Physiol., 2016. 57(10): p. 2147-2160
  13. Huang BL, et al.
    Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.
    Genet. Mol. Res., 2017.
  14. Wu Q, et al.
    Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA.
    Plant Cell, 2016. 28(9): p. 2178-2196
  15. Li P, et al.
    The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses.
    Physiol Plant, 2017. 159(4): p. 416-432
  16. Song L, et al.
    A transcription factor hierarchy defines an environmental stress response network.
    Science, 2017.
  17. O'Shea C, et al.
    Structures and Short Linear Motif of Disordered Transcription Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein Radical-induced Cell Death1.
    J. Biol. Chem., 2017. 292(2): p. 512-527
  18. Corrales AR, et al.
    Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis.
    Plant Cell Environ., 2017. 40(5): p. 748-764
  19. Koguchi M,Yamasaki K,Hirano T,Sato MH
    Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis.
    Plant Signal Behav, 2017. 12(3): p. e1295907
  20. Zhou M,Paul AL,Ferl RJ
    Data for characterization of SALK_084889, a T-DNA insertion line of Arabidopsis thaliana.
    Data Brief, 2017. 13: p. 253-258
  21. Morimoto K, et al.
    BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(40): p. E8528-E8536
  22. Sakuraba Y,Bülbül S,Piao W,Choi G,Paek NC
    Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways.
    Plant J., 2017. 92(6): p. 1106-1120
  23. Zhang N, et al.
    The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins.
    Plant Physiol., 2017. 175(4): p. 1878-1892
  24. Bugge K, et al.
    Structure of Radical-Induced Cell Death1 Hub Domain Reveals a Common αα-Scaffold for Disorder in Transcriptional Networks.
    Structure, 2018. 26(5): p. 734-746.e7
  25. Mizoi J, et al.
    Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana.
    J. Biol. Chem., 2019. 294(3): p. 902-917