PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Rsa1.0_01737.1_g00003.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Raphanus
Family bHLH
Protein Properties Length: 191aa    MW: 21432.8 Da    PI: 7.9964
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Rsa1.0_01737.1_g00003.1genomeRGDView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH15.63e-051371655
                             HHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
                      HLH 16 iNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55
                             +N+ +  Lr+l P     + k+ + a+i   A+e+Ik++q
  Rsa1.0_01737.1_g00003.1  1 MNEHLKSLRSLTPCF---YIKRGDQASIIGGAIEFIKEMQ 37
                             8*************9...9*******************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:4.10.280.101.7E-5148IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088810.563136IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.31E-8153IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000834.86E-6141No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 191 aa     Download sequence    Send to blast
MNEHLKSLRS LTPCFYIKRG DQASIIGGAI EFIKEMQQLV QVLESKKRRK TLNRPSFPCD  60
HQTLEPSLLA AATNATTRMP FSQIENVMTT STFKEVGACS NSHHANVEAK ISGSNVVLRV  120
VSWRIEGQLV RIISVLEKLS FQVLHLNISS MEESVLYFFV VKIGLECHLS LEELTLEVQK  180
SFVPEAIVST N
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
14549KKRRK
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapRsa1.0_01737.1_g00003.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_018488417.11e-133PREDICTED: transcription factor MUTE
SwissprotQ9M8K61e-118MUTE_ARATH; Transcription factor MUTE
TrEMBLA0A078GHS91e-126A0A078GHS9_BRANA; BnaA05g31160D protein
TrEMBLA0A397ZP521e-126A0A397ZP52_BRACM; Uncharacterized protein
TrEMBLM4DW811e-126M4DW81_BRARP; Uncharacterized protein
STRINGBra020775.1-P1e-126(Brassica rapa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM70732640
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G06120.11e-120bHLH family protein
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
    [PMID:18266617]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  4. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
    [PMID:26157447]
  5. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
    [PMID:26748914]
  6. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  7. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  8. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
    [PMID:28266915]
  9. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
    [PMID:28302860]
  10. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  11. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5
    [PMID:29738710]