PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Pgl003056
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Acrogymnospermae; Pinidae; Pinales; Pinaceae; Picea
Family AP2
Protein Properties Length: 421aa    MW: 47039 Da    PI: 5.6259
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
PUT-175a-Picea_glauca-17939PU_refplantGDBView CDS
gnl|UG|Pgl#S55340205PU_unrefUnigeneView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP247.44.6e-1565124155
        AP2   1 sgykGVrwdkkrgrWvAeIrd.pseng...kr.krfslgkfgtaeeAakaaiaarkkleg 55 
                s y+GV++++++gr++A+++d  s+n    k+ ++++lg +  +e Aa a++ a++k++g
  Pgl003056  65 SIYRGVTRHRSTGRYEAHLWDkSSWNEtkhKKgRQVYLGAYNDEETAAHAYDLAALKYWG 124
                57*******************777777777557*************************98 PP

2AP252.71.1e-16167218155
        AP2   1 sgykGVrwdkkrgrWvAeIrd.psengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                s+y+GV +++ +grW+A+I   +   g +k+ +lg++ t+eeAa+a++ a+ +++g
  Pgl003056 167 SKYRGVARHHHNGRWEARIGRvF---G-NKYLYLGTYNTEEEAAAAYDMAAVEYRG 218
                89****99**********99966...3.6*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF541712.68E-1565133IPR016177DNA-binding domain
CDDcd000188.36E-1965132No hitNo description
PfamPF008473.9E-1165124IPR001471AP2/ERF domain
PROSITE profilePS5103218.86166132IPR001471AP2/ERF domain
SMARTSM003802.2E-2366138IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.104.1E-1666133IPR001471AP2/ERF domain
SuperFamilySSF541715.17E-18167228IPR016177DNA-binding domain
PfamPF008471.1E-11167218IPR001471AP2/ERF domain
CDDcd000181.29E-12167228No hitNo description
SMARTSM003805.3E-24168232IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.101.3E-17168227IPR001471AP2/ERF domain
PROSITE profilePS5103218.479168226IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 421 aa     Download sequence    Send to blast
MGCHVQILVA GENNNLKVGE ESSASLKSEA AAKNGSSLSQ PKTKRARKSL PKEKPVDSNA  60
ARRSSIYRGV TRHRSTGRYE AHLWDKSSWN ETKHKKGRQV YLGAYNDEET AAHAYDLAAL  120
KYWGSETTLN FPSNTYSKEL EAMQGISKEE YLASLRRRSS GFSRGVSKYR GVARHHHNGR  180
WEARIGRVFG NKYLYLGTYN TEEEAAAAYD MAAVEYRGLN AVTNFDLSRY AAYLRPGQSG  240
FSVEQSEFSS KAPEIEKSCI SQGSYQSHHD ETCELSDRIP QSASASTALE LLFQSAKFKE  300
MLERSKSDSG LIQPEQSKSL EEKHESISYS DDMMDAFFEN SDLLINVEEG QDITQFLESS  360
SCDNADIFHG VEADMEIQIS GLGICSSELD LDQQDYDLMH NPCMQSIDSI ALPCVISSYS  420
R
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Mostly expressed in siliques, especially in seeds. Also detected in roots and flowers, and, to a lower extent, in leaves stems and seedlings. {ECO:0000269|PubMed:15500472, ECO:0000269|PubMed:15753106}.
Functional Description ? help Back to Top
Source Description
UniProtMay be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. Negative regulator of the ABA-mediated germination inhibition. {ECO:0000250, ECO:0000269|PubMed:12084821, ECO:0000269|PubMed:15500472, ECO:0000269|PubMed:15753106, ECO:0000269|PubMed:16553903, ECO:0000269|PubMed:16632590, ECO:0000269|PubMed:9733529}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transiantly in leaves by sucrose, but not by abscisic acid (ABA). {ECO:0000269|PubMed:15753106}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_028051280.11e-121AP2-like ethylene-responsive transcription factor At1g16060 isoform X1
RefseqXP_028051281.11e-121AP2-like ethylene-responsive transcription factor At1g16060 isoform X2
SwissprotQ6X5Y61e-97WRI1_ARATH; Ethylene-responsive transcription factor WRI1
TrEMBLA0A2G5DR681e-118A0A2G5DR68_AQUCA; Uncharacterized protein
STRINGAquca_016_00348.11e-119(Aquilegia coerulea)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G54320.35e-84AP2 family protein
Publications ? help Back to Top
  1. Kim HU, et al.
    Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.
    FEBS Open Bio, 2013. 4: p. 25-32
    [PMID:24363987]
  2. Wu XL,Liu ZH,Hu ZH,Huang RZ
    BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.
    J Integr Plant Biol, 2014. 56(6): p. 582-93
    [PMID:24393360]
  3. Shigematsu H, et al.
    Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.
    PLoS ONE, 2014. 9(1): p. e87724
    [PMID:24475319]
  4. Kim HU, et al.
    Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.
    Plant Biotechnol. J., 2015. 13(9): p. 1346-59
    [PMID:25790072]
  5. Grimberg Å,Carlsson AS,Marttila S,Bhalerao R,Hofvander P
    Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
    BMC Plant Biol., 2015. 15: p. 192
    [PMID:26253704]
  6. Kanai M,Mano S,Kondo M,Hayashi M,Nishimura M
    Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Plant Biotechnol. J., 2016. 14(5): p. 1241-50
    [PMID:26503031]
  7. Li Q, et al.
    Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.
    Front Plant Sci, 2015. 6: p. 1015
    [PMID:26635841]
  8. Hofvander P, et al.
    Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.
    Plant Biotechnol. J., 2016. 14(9): p. 1883-98
    [PMID:26914183]
  9. Shen SL, et al.
    CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange.
    J. Exp. Bot., 2016. 67(14): p. 4105-15
    [PMID:27194737]
  10. Adhikari ND,Bates PD,Browse J
    WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.
    Plant Physiol., 2016. 171(1): p. 179-91
    [PMID:27208047]
  11. Kim MJ,Jang IC,Chua NH
    The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.
    Plant Physiol., 2016. 171(3): p. 1951-64
    [PMID:27246098]
  12. Bhattacharya S,Das N,Maiti MK
    Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.
    Plant Physiol. Biochem., 2016. 107: p. 204-213
    [PMID:27314514]
  13. Ma W, et al.
    14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.
    Plant J., 2016. 88(2): p. 228-235
    [PMID:27322486]
  14. Li D, et al.
    MYB89 Transcription Factor Represses Seed Oil Accumulation.
    Plant Physiol., 2017. 173(2): p. 1211-1225
    [PMID:27932421]
  15. Ivarson E, et al.
    Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre.
    Front Plant Sci, 2016. 7: p. 2032
    [PMID:28119714]
  16. An D, et al.
    Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves.
    Front Plant Sci, 2017. 8: p. 34
    [PMID:28174580]
  17. Zhai Z,Liu H,Shanklin J
    Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis.
    Plant Cell, 2017. 29(4): p. 871-889
    [PMID:28314829]
  18. Jin J, et al.
    Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.
    Sci Rep, 2017. 7(1): p. 439
    [PMID:28348403]
  19. Kong Q, et al.
    The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.
    J. Exp. Bot., 2017. 68(16): p. 4627-4634
    [PMID:28981783]
  20. Kang NK, et al.
    Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina.
    Biotechnol Biofuels, 2017. 10: p. 231
    [PMID:29046718]
  21. Pellaud S, et al.
    WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis.
    New Phytol., 2018. 217(1): p. 245-260
    [PMID:29105089]
  22. Hanano A,Almousally I,Shaban M,Murphy DJ
    Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1.
    J. Exp. Bot., 2018. 69(7): p. 1781-1794
    [PMID:29394403]