PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID 462879964
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; PACMAD clade; Chloridoideae; Eragrostideae; Eragrostidinae; Eragrostis
Protein Properties Length: 171aa    MW: 20134.2 Da    PI: 9.9402
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
462879964genomeTefView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
     SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
               krienk+ rqvtf+kRrng+lKKA+ELS LCdaeva+iifs +g+l+e+ss
               79***********************************************96 PP

      K-box  15 eslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkkl 98 
                e  +qe+ kLk ++e Lq++qR++lGedL++L+ keL+qLe+q+e slk+iRs+Kn+++l++i +l+ ke+elq+ nk+Lrkk+
                5678******************************************************************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5006632.52161IPR002100Transcription factor, MADS-box
SMARTSM004323.7E-39160IPR002100Transcription factor, MADS-box
CDDcd002655.96E-40278No hitNo description
SuperFamilySSF554554.84E-32279IPR002100Transcription factor, MADS-box
PRINTSPR004042.3E-31323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003198.0E-251057IPR002100Transcription factor, MADS-box
PRINTSPR004042.3E-312338IPR002100Transcription factor, MADS-box
PRINTSPR004042.3E-313859IPR002100Transcription factor, MADS-box
PROSITE profilePS5129714.79886171IPR002487Transcription factor, K-box
PfamPF014862.5E-2686170IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010093Biological Processspecification of floral organ identity
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 171 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ox0_A1e-239117122102Developmental protein SEPALLATA 3
4ox0_B1e-239117122102Developmental protein SEPALLATA 3
4ox0_C1e-239117122102Developmental protein SEPALLATA 3
4ox0_D1e-239117122102Developmental protein SEPALLATA 3
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtProbable transcription factor involved in the development of floral organs. Required for the formation of inner floral organs (lodicules, stamens and carpels, or whorls 2, 3 and 4) and the lemma and palea (whorl 1), which are grass floral organs analogous to sepals. May be involved in the control of flowering time. Seems to act as transcriptional activator. May act upstream of the auxin-responsive protein GH3.8. {ECO:0000269|PubMed:10852934, ECO:0000269|PubMed:11466523, ECO:0000269|PubMed:16217607, ECO:0000269|PubMed:7948920, ECO:0000269|Ref.11}.
UniProtProbable transcription factor involved in the development of floral organs. Required for the formation of inner floral organs (lodicules, stamens and carpels, or whorls 2, 3 and 4) and the lemma and palea (whorl 1), which are grass floral organs analogous to sepals. May be involved in the control of flowering time. Seems to act as transcriptional activator. May act upstream of the auxin-responsive protein GH3.8. {ECO:0000269|PubMed:16146529}.
Cis-element ? help Back to Top
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY5975160.0AY597516.1 Eleusine coracana leafy hull sterile 1 (LHS1) mRNA, partial cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_002465643.11e-108MADS-box transcription factor 1 isoform X2
RefseqXP_025794719.11e-108MADS-box transcription factor 1-like
SwissprotA2XDY11e-108MADS1_ORYSI; MADS-box transcription factor 1
SwissprotQ10PZ91e-108MADS1_ORYSJ; MADS-box transcription factor 1
TrEMBLA0A1Z5SAP81e-107A0A1Z5SAP8_SORBI; Uncharacterized protein
TrEMBLA0A2S3ISZ81e-107A0A2S3ISZ8_9POAL; Uncharacterized protein
TrEMBLA0A2T7CFP61e-107A0A2T7CFP6_9POAL; Uncharacterized protein
STRINGPavir.Ia04691.1.p1e-107(Panicum virgatum)
STRINGPavir.Ib00756.1.p1e-107(Panicum virgatum)
STRINGSb01g042840.11e-107(Sorghum bicolor)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G24260.14e-73MIKC_MADS family protein
Publications ? help Back to Top
  1. Jia H, et al.
    Characterization and transcriptional profiles of two rice MADS-box genes.
    Plant Sci., 2000. 155(2): p. 115-122
  2. Sung SK, et al.
    Characterization of MADS box genes from hot pepper.
    Mol. Cells, 2001. 11(3): p. 352-9
  3. Kim S,Kim SR,An CS,Hong YN,Lee KW
    Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.).
    Mol. Cells, 2001. 12(2): p. 221-6
  4. Jang S,An K,Lee S,An G
    Characterization of tobacco MADS-box genes involved in floral initiation.
    Plant Cell Physiol., 2002. 43(2): p. 230-8
  5. Ronai Z, et al.
    Transcription factor binding study by capillary zone electrophoretic mobility shift assay.
    Electrophoresis, 2003. 24(1-2): p. 96-100
  6. Kikuchi S, et al.
    Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice.
    Science, 2003. 301(5631): p. 376-9
  7. Nam J, et al.
    Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(7): p. 1910-5
  8. Malcomber ST,Kellogg EA
    Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses.
    Plant Cell, 2004. 16(7): p. 1692-706
  9. Ruffel S, et al.
    Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library.
    Gene, 2004. 338(2): p. 209-16
  10. Kang HG,An G
    Morphological alterations by ectopic expression of the rice OsMADS4 gene in tobacco plants.
    Plant Cell Rep., 2005. 24(2): p. 120-6
  11. Brenner ED, et al.
    EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes.
    BMC Genomics, 2005. 6: p. 143
  12. Chen ZX, et al.
    Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice.
    Planta, 2006. 223(5): p. 882-90
  13. Qu LJ,Zhu YX
    Transcription factor families in Arabidopsis: major progress and outstanding issues for future research.
    Curr. Opin. Plant Biol., 2006. 9(5): p. 544-9
  14. Kater MM,Dreni L,Colombo L
    Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.
    J. Exp. Bot., 2006. 57(13): p. 3433-44
  15. Yamaguchi T,Hirano HY
    Function and diversification of MADS-box genes in rice.
    ScientificWorldJournal, 2006. 6: p. 1923-32
  16. Whipple CJ,Zanis MJ,Kellogg EA,Schmidt RJ
    Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(3): p. 1081-6
  17. Ding J, et al.
    Highly asymmetric rice genomes.
    BMC Genomics, 2007. 8: p. 154
  18. Shitsukawa N, et al.
    Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.
    Plant Cell, 2007. 19(6): p. 1723-37
  19. Arora R, et al.
    MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.
    BMC Genomics, 2007. 8: p. 242
  20. Yoshida H, et al.
    superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice.
    Plant Biotechnol. J., 2007. 5(6): p. 835-46
  21. Dreni L, et al.
    The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.
    Plant J., 2007. 52(4): p. 690-9
  22. Kim SL,Lee S,Kim HJ,Nam HG,An G
    OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a.
    Plant Physiol., 2007. 145(4): p. 1484-94
  23. Lee S,Choi SC,An G
    Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses.
    Plant J., 2008. 54(1): p. 93-105
  24. Mehrabi R,Ding S,Xu JR
    MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea.
    Eukaryotic Cell, 2008. 7(5): p. 791-9
  25. Lee S, et al.
    Further characterization of a rice AGL12 group MADS-box gene, OsMADS26.
    Plant Physiol., 2008. 147(1): p. 156-68
  26. Jeon JS,Lee S,An G
    Intragenic control of expression of a rice MADS box gene OsMADS1.
    Mol. Cells, 2008. 26(5): p. 474-80
  27. Meng Z, et al.
    Structural and functional analysis of a MADS box containing genomic DNA sequence cloned from rice.
    Sci. China, C, Life Sci., 1998. 41(6): p. 561-8
  28. Qu L, et al.
    Expression pattern and functional analysis of a MADS-box gene M79 from rice.
    Sci. China, C, Life Sci., 2001. 44(2): p. 161-9
  29. Yi M, et al.
    The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae.
    Plant Cell, 2009. 21(2): p. 681-95
  30. Zamora A,Sun Q,Hamblin MT,Aquadro CF,Kresovich S
    Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.
    Mol. Biol. Evol., 2009. 26(9): p. 2015-30
  31. Lee S,Jeong DH,An G
    A possible working mechanism for rice SVP-group MADS-box proteins as negative regulators of brassinosteroid responses.
    Plant Signal Behav, 2008. 3(7): p. 471-4
  32. Aceto S, et al.
    Isolation and phylogenetic footprinting analysis of the 5'-regulatory region of the floral homeotic gene OrcPI from Orchis italica (Orchidaceae).
    J. Hered., 2010 Jan-Feb. 101(1): p. 124-31
  33. Kobayashi K,Maekawa M,Miyao A,Hirochika H,Kyozuka J
    PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.
    Plant Cell Physiol., 2010. 51(1): p. 47-57
  34. Cui R, et al.
    Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Plant J., 2010. 61(5): p. 767-81
  35. Li H, et al.
    The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.
    Cell Res., 2010. 20(3): p. 299-313
  36. Wang K, et al.
    DEP and AFO regulate reproductive habit in rice.
    PLoS Genet., 2010. 6(1): p. e1000818
  37. Gao X, et al.
    The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development.
    Plant Physiol., 2010. 153(2): p. 728-40
  38. Zhang J,Nallamilli BR,Mujahid H,Peng Z
    OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa).
    Plant J., 2010. 64(4): p. 604-17
  39. Seok HY, et al.
    Rice ternary MADS protein complexes containing class B MADS heterodimer.
    Biochem. Biophys. Res. Commun., 2010. 401(4): p. 598-604
  40. Zahn LM, et al.
    Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies.
    Genome Biol., 2010. 11(10): p. R101
  41. Tang X, et al.
    Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis.
    Plant Physiol., 2010. 154(4): p. 1855-70
  42. Yamaki S,Nagato Y,Kurata N,Nonomura K
    Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice.
    Dev. Biol., 2011. 351(1): p. 208-16
  43. Bian XF, et al.
    Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1.
    Plant Cell Rep., 2011. 30(12): p. 2243-54
  44. Ciaffi M,Paolacci AR,Tanzarella OA,Porceddu E
    Molecular aspects of flower development in grasses.
    Sex. Plant Reprod., 2011. 24(4): p. 247-82
  45. Yadav SR,Khanday I,Majhi BB,Veluthambi K,Vijayraghavan U
    Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility.
    Plant Cell Physiol., 2011. 52(12): p. 2123-35
  46. Zhu P,Gu H,Jiao Y,Huang D,Chen M
    Computational identification of protein-protein interactions in rice based on the predicted rice interactome network.
    Genomics Proteomics Bioinformatics, 2011. 9(4-5): p. 128-37
  47. Yoshida H
    Is the lodicule a petal: molecular evidence?
    Plant Sci., 2012. 184: p. 121-8
  48. Yin LL,Xue HW
    The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development.
    Plant Cell, 2012. 24(3): p. 1049-65
  49. Kobayashi K, et al.
    Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene.
    Plant Cell, 2012. 24(5): p. 1848-59
  50. Duan Y, et al.
    Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.).
    Plant Mol. Biol., 2012. 80(4-5): p. 429-42
  51. Yang X, et al.
    Live and let die - the B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa).
    PLoS ONE, 2012. 7(12): p. e51435
  52. Yoshida A, et al.
    TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(2): p. 767-72
  53. Koo HJ, et al.
    Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids.
    BMC Plant Biol., 2013. 13: p. 27
  54. Khanday I,Yadav SR,Vijayraghavan U
    Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways.
    Plant Physiol., 2013. 161(4): p. 1970-83
  55. Puig J, et al.
    Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice.
    Gene Expr. Patterns, 2013 Jun-Jul. 13(5-6): p. 160-70
  56. Lee DS, et al.
    The Bsister MADS gene FST determines ovule patterning and development of the zygotic embryo and endosperm.
    PLoS ONE, 2013. 8(3): p. e58748
  57. Shu Y,Yu D,Wang D,Guo D,Guo C
    Genome-wide survey and expression analysis of the MADS-box gene family in soybean.
    Mol. Biol. Rep., 2013. 40(6): p. 3901-11
  58. Lin CS, et al.
    Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families.
    Plant Mol. Biol., 2013. 82(1-2): p. 193-204
  59. Jin Y,Yang H,Wei Z,Ma H,Ge X
    Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming.
    Mol Plant, 2013. 6(5): p. 1630-45
  60. Liu Y, et al.
    Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.
    Plant Cell, 2013. 25(4): p. 1288-303
  61. Wei X, et al.
    Fine mapping of BH1, a gene controlling lemma and palea development in rice.
    Plant Cell Rep., 2013. 32(9): p. 1455-63
  62. Tian Y,Yuan X,Jiang S,Cui B,Su J
    Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi).
    Sheng Wu Gong Cheng Xue Bao, 2013. 29(2): p. 203-13
  63. Wong CE,Singh MB,Bhalla PL
    Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean.
    BMC Plant Biol., 2013. 13: p. 105
  64. Yan Y,Wang H,Hamera S,Chen X,Fang R
    miR444a has multiple functions in the rice nitrate-signaling pathway.
    Plant J., 2014. 78(1): p. 44-55
  65. Cai Q, et al.
    Jasmonic acid regulates spikelet development in rice.
    Nat Commun, 2014. 5: p. 3476
  66. Zhou Q, et al.
    The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility.
    BMC Genomics, 2014. 15: p. 399
  67. Shiono K, et al.
    Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa).
    J. Exp. Bot., 2014. 65(17): p. 4795-806
  68. Shih MC, et al.
    BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development.
    BMC Plant Biol., 2014. 14: p. 179
  69. Wang Y, et al.
    Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice.
    J Zhejiang Univ Sci B, 2014. 15(7): p. 624-37
  70. Wang H, et al.
    OsMADS32 interacts with PI-like proteins and regulates rice flower development.
    J Integr Plant Biol, 2015. 57(5): p. 504-13
  71. Nayar S,Kapoor M,Kapoor S
    Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus.
    J. Exp. Bot., 2014. 65(18): p. 5339-50
  72. Yu C, et al.
    The effects of fluctuations in the nutrient supply on the expression of five members of the AGL17 clade of MADS-box genes in rice.
    PLoS ONE, 2014. 9(8): p. e105597
  73. Duan W, et al.
    Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).
    Mol. Genet. Genomics, 2015. 290(1): p. 239-55
  74. Conrad LJ, et al.
    The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice.
    Plant J., 2014. 80(5): p. 883-94
  75. Zhang J, et al.
    Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice.
    J. Exp. Bot., 2015. 66(1): p. 99-112
  76. Tian Y, et al.
    Genome-wide identification and analysis of the MADS-box gene family in apple.
    Gene, 2015. 555(2): p. 277-90
  77. Yan D, et al.
    Curved chimeric palea 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development.
    Plant J., 2015. 82(1): p. 12-24
  78. Chen R, et al.
    A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58.
    Mol Plant, 2015. 8(7): p. 1069-89
  79. Hu Y, et al.
    Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.
    Mol Plant, 2015. 8(9): p. 1366-84
  80. Ito Y,Nakano T
    Development and regulation of pedicel abscission in tomato.
    Front Plant Sci, 2015. 6: p. 442
  81. Khong GN, et al.
    OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice.
    Plant Physiol., 2015. 169(4): p. 2935-49
  82. Schilling S, et al.
    Non-canonical structure, function and phylogeny of the Bsister MADS-box gene OsMADS30 of rice (Oryza sativa).
    Plant J., 2015. 84(6): p. 1059-72
  83. Moumeni A, et al.
    Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit.
    BMC Genomics, 2015. 16: p. 1110
  84. Bai X, et al.
    Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice.
    Sci Rep, 2016. 6: p. 19022
  85. Wang H, et al.
    A Signaling Cascade from miR444 to RDR1 in Rice Antiviral RNA Silencing Pathway.
    Plant Physiol., 2016. 170(4): p. 2365-77
  86. Chen C, et al.
    Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity.
    Plant Physiol., 2016. 171(1): p. 606-22
  87. Dreni L,Zhang D
    Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.
    J. Exp. Bot., 2016. 67(6): p. 1625-38
  88. Shibaya T, et al.
    Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice.
    Plant Cell Physiol., 2016. 57(9): p. 1828-38
  89. Zhang B, et al.
    A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.).
    PLoS Genet., 2016. 12(7): p. e1006152
  90. Khanday I, et al.
    Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties.
    Plant Physiol., 2016. 172(1): p. 372-88
  91. Alter P, et al.
    Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
    Plant Physiol., 2016. 172(1): p. 389-404
  92. Wu F, et al.
    The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.
    Plant J., 2017. 89(2): p. 310-324
  93. Li C, et al.
    Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis.
    Front Plant Sci, 2016. 7: p. 1390