PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID EcC052542.10
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Myrtales; Myrtaceae; Myrtoideae; Eucalypteae; Eucalyptus
Family M-type_MADS
Protein Properties Length: 83aa    MW: 9566.28 Da    PI: 11.568
Description M-type_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
EcC052542.10genomeECGDView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
        SRF-TF  2 rienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                  rien + rqvtfskRrng+lKKA+ELSvLCdaeva+iifs++gklye++s
                  8***********************************************86 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5006630.992161IPR002100Transcription factor, MADS-box
SMARTSM004321.1E-39160IPR002100Transcription factor, MADS-box
CDDcd002657.79E-38366No hitNo description
PRINTSPR004041.5E-30323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
SuperFamilySSF554552.09E-29369IPR002100Transcription factor, MADS-box
PfamPF003196.4E-281057IPR002100Transcription factor, MADS-box
PRINTSPR004041.5E-302338IPR002100Transcription factor, MADS-box
PRINTSPR004041.5E-303859IPR002100Transcription factor, MADS-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006508Biological Processproteolysis
GO:0003677Molecular FunctionDNA binding
GO:0004252Molecular Functionserine-type endopeptidase activity
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 83 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3mu6_A2e-18366265Myocyte-specific enhancer factor 2A
3mu6_B2e-18366265Myocyte-specific enhancer factor 2A
3mu6_C2e-18366265Myocyte-specific enhancer factor 2A
3mu6_D2e-18366265Myocyte-specific enhancer factor 2A
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtProbable transcription factor active in flowering time control. May control internode elongation and promote floral transition phase. May act upstream of the floral regulators MADS1, MADS14, MADS15 and MADS18 in the floral induction pathway. {ECO:0000269|PubMed:15144377, ECO:0000269|PubMed:17166135}.
UniProtTranscription activator active in flowering time control. May integrate signals from the photoperiod, vernalization and autonomous floral induction pathways. Can modulate class B and C homeotic genes expression. When associated with AGL24, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral development. {ECO:0000269|PubMed:10995392, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:18466303, ECO:0000269|PubMed:19656343}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by gibberellins, vernalization and under long-day conditions. Gradual increase during vegetative growth. Induced by AGL24 at the shoot apex at the floral transitional stage. Repressed by SVP during the early stages of flower development. Inhibited by AP1 in emerging floral meristems (PubMed:17428825, PubMed:18339670, PubMed:19656343). Repressed by SHL to prevent flowering (PubMed:25281686). {ECO:0000269|PubMed:17428825, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:19656343, ECO:0000269|PubMed:25281686}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_007134936.17e-36hypothetical protein PHAVU_010G088100g
RefseqXP_007134937.17e-36hypothetical protein PHAVU_010G088100g
SwissprotO646452e-34SOC1_ARATH; MADS-box protein SOC1
SwissprotQ9XJ602e-34MAD50_ORYSJ; MADS-box transcription factor 50
TrEMBLM5WTQ23e-35M5WTQ2_PRUPE; Uncharacterized protein (Fragment)
STRINGEMJ101605e-36(Prunus persica)
STRINGLus100365433e-36(Linum usitatissimum)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G45660.19e-37AGAMOUS-like 20
Publications ? help Back to Top
  1. Thomson MJ,Edwards JD,Septiningsih EM,Harrington SE,McCouch SR
    Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL.
    Genetics, 2006. 172(4): p. 2501-14
  2. Park SJ, et al.
    Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod.
    Plant J., 2008. 56(6): p. 1018-29
  3. Lee S,Jeong DH,An G
    A possible working mechanism for rice SVP-group MADS-box proteins as negative regulators of brassinosteroid responses.
    Plant Signal Behav, 2008. 3(7): p. 471-4
  4. Maas LF,McClung A,McCouch S
    Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice.
    Theor. Appl. Genet., 2010. 120(5): p. 895-908
  5. Sun C, et al.
    The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice.
    Plant Cell, 2012. 24(8): p. 3235-47
  6. Ramamoorthy R,Phua EE,Lim SH,Tan HT,Kumar PP
    Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    PLoS ONE, 2013. 8(6): p. e67243
  7. Heidari B,Nemie-Feyissa D,Kangasjärvi S,Lillo C
    Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A.
    PLoS ONE, 2013. 8(7): p. e67987
  8. Mouhu K, et al.
    The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.
    Plant Cell, 2013. 25(9): p. 3296-310
  9. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
  10. Fu J, et al.
    Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Plant Physiol. Biochem., 2014. 74: p. 230-8
  11. Choi SC, et al.
    Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3.
    Plant Physiol., 2014. 164(3): p. 1326-37
  12. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
  13. Preston JC,Jorgensen SA,Jha SG
    Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.
    PLoS ONE, 2014. 9(5): p. e96108
  14. Berr A,Shafiq S,Pinon V,Dong A,Shen WH
    The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway.
    Plant J., 2015. 81(2): p. 316-28
  15. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
  16. Núñez-López L,Aguirre-Cruz A,Barrera-Figueroa BE,Peña-Castro JM
    Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor.
    PeerJ, 2015. 3: p. e817
  17. Jin J, et al.
    MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.
    Plant Physiol., 2015. 168(4): p. 1275-85
  18. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
  19. Kang MY, et al.
    Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis.
    Sci Rep, 2015. 5: p. 9728
  20. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
  21. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
  22. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
  23. Liu X, et al.
    Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.).
    Plant Cell Rep., 2016. 35(2): p. 357-68
  24. Li M, et al.
    DELLA proteins interact with FLC to repress flowering transition.
    J Integr Plant Biol, 2016. 58(7): p. 642-55
  25. Franks SJ, et al.
    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.
    PeerJ, 2015. 3: p. e1339
  26. Hwang YH, et al.
    Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time.
    Plant Cell Rep., 2016. 35(4): p. 857-65
  27. Liu B, et al.
    Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Biochim. Biophys. Acta, 2016. 1859(4): p. 581-90
  28. Liu XR, et al.
    Overexpression of an Orchid (Dendrobium nobile) SOC1/TM3-Like Ortholog, DnAGL19, in Arabidopsis Regulates HOS1-FT Expression.
    Front Plant Sci, 2016. 7: p. 99
  29. Davin N, et al.
    Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
    Plant J., 2016. 86(5): p. 376-90
  30. Del Olmo I, et al.
    Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.
    Nucleic Acids Res., 2016. 44(12): p. 5597-614
  31. Mahrez W, et al.
    BRR2a Affects Flowering Time via FLC Splicing.
    PLoS Genet., 2016. 12(4): p. e1005924
  32. Hyun Y, et al.
    Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.
    Dev. Cell, 2016. 37(3): p. 254-66
  33. He L, et al.
    Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.
    Plant Physiol., 2016. 171(3): p. 1675-85
  34. Shibaya T, et al.
    Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice.
    Plant Cell Physiol., 2016. 57(9): p. 1828-38
  35. Alter P, et al.
    Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
    Plant Physiol., 2016. 172(1): p. 389-404
  36. Xu C,Yu Y,Zhang Y,Li Y,Wei S
    Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Bioelectromagnetics, 2017. 38(1): p. 1-10
  37. Riboni M,Robustelli Test A,Galbiati M,Tonelli C,Conti L
    ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(22): p. 6309-6322
  38. Kong X,Luo X,Qu GP,Liu P,Jin JB
    Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    J Integr Plant Biol, 2017. 59(1): p. 15-29
  39. Kapolas G, et al.
    APRF1 promotes flowering under long days in Arabidopsis thaliana.
    Plant Sci., 2016. 253: p. 141-153
  40. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
  41. Chen J, et al.
    Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.
    Plant Physiol., 2017. 173(3): p. 1881-1891
  42. Denis E, et al.
    WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
    Plant J., 2017. 90(3): p. 560-572
  43. Nasim Z,Fahim M,Ahn JH
    Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.
    Front Plant Sci, 2017. 8: p. 191
  44. Wilson DC,Kempthorne CJ,Carella P,Liscombe DK,Cameron RK
    Age-Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae.
    Mol. Plant Microbe Interact., 2017. 30(11): p. 919-929
  45. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
  46. Jamge S,Stam M,Angenent GC,Immink RGH
    A cautionary note on the use of chromosome conformation capture in plants.
    Plant Methods, 2017. 13: p. 101
  47. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406