PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID EcC034842.100
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Myrtales; Myrtaceae; Myrtoideae; Eucalypteae; Eucalyptus
Family M-type_MADS
Protein Properties Length: 73aa    MW: 8368.99 Da    PI: 11.3672
Description M-type_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
EcC034842.100genomeECGDView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
         SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                   krien+s rqvtfskRrng++KKA EL +LCd+eva+++fss+gk y ++s
                   79*******************************************999986 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004328.7E-36160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006628.623161IPR002100Transcription factor, MADS-box
SuperFamilySSF554552.22E-28261IPR002100Transcription factor, MADS-box
CDDcd002651.34E-34265No hitNo description
PRINTSPR004043.8E-26323IPR002100Transcription factor, MADS-box
PfamPF003199.4E-271057IPR002100Transcription factor, MADS-box
PRINTSPR004043.8E-262338IPR002100Transcription factor, MADS-box
PRINTSPR004043.8E-263859IPR002100Transcription factor, MADS-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009735Biological Processresponse to cytokinin
GO:0010289Biological Processhomogalacturonan biosynthetic process
GO:0048364Biological Processroot development
GO:0048367Biological Processshoot system development
GO:0005634Cellular Componentnucleus
GO:0005768Cellular Componentendosome
GO:0005802Cellular Componenttrans-Golgi network
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0008168Molecular Functionmethyltransferase activity
GO:0019904Molecular Functionprotein domain specific binding
GO:0046872Molecular Functionmetal ion binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 73 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6byy_A2e-16161161MEF2 CHIMERA
6byy_B2e-16161161MEF2 CHIMERA
6byy_C2e-16161161MEF2 CHIMERA
6byy_D2e-16161161MEF2 CHIMERA
6bz1_A2e-16161161MEF2 CHIMERA
6bz1_B2e-16161161MEF2 CHIMERA
6bz1_C2e-16161161MEF2 CHIMERA
6bz1_D2e-16161161MEF2 CHIMERA
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtPutative transcription factor that seems to play a central role in the regulation of flowering time in the late-flowering phenotype by interacting with 'FRIGIDA', the autonomous and the vernalization flowering pathways. Inhibits flowering by repressing 'SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1'. {ECO:0000269|PubMed:10716723, ECO:0000269|PubMed:11283346, ECO:0000269|PubMed:19121105}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Epigenetically down-regulated by vernalization. Vernalization repression is initiated by VIN3. Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. Up-regulated by HUA2. Down-regulated by VOZ1 and/or VOZ2. Down-regulated by RBG7. {ECO:0000269|PubMed:14712276, ECO:0000269|PubMed:15659097, ECO:0000269|PubMed:18573194, ECO:0000269|PubMed:19783648, ECO:0000269|PubMed:22904146}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_010044832.26e-35PREDICTED: MADS-box protein FLOWERING LOCUS C isoform X1
SwissprotQ9S7Q75e-26FLC_ARATH; MADS-box protein FLOWERING LOCUS C
TrEMBLA0A059D9117e-43A0A059D911_EUCGR; Uncharacterized protein
STRINGXP_010044832.15e-36(Eucalyptus grandis)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G10140.29e-29MIKC_MADS family protein
Publications ? help Back to Top
  1. Schmitz RJ,Amasino RM
    Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.
    Biochim. Biophys. Acta, 2007 May-Jun. 1769(5-6): p. 269-75
  2. Xu Y,Gan ES,Ito T
    The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5.
    Plant Signal Behav, 2014.
  3. Xu Y,Gan ES,He Y,Ito T
    Flowering and genome integrity control by a nuclear matrix protein in Arabidopsis.
    Nucleus, 2013 Jul-Aug. 4(4): p. 274-6
  4. Lee J,Amasino RM
    Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis.
    Nat Commun, 2013. 4: p. 2186
  5. Ding L,Kim SY,Michaels SD
    FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.
    Plant Physiol., 2013. 163(1): p. 243-52
  6. Ruelens P, et al.
    FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes.
    Nat Commun, 2013. 4: p. 2280
  7. Heidari B,Nemie-Feyissa D,Kangasjärvi S,Lillo C
    Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A.
    PLoS ONE, 2013. 8(7): p. e67987
  8. Rosa S, et al.
    Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization.
    Genes Dev., 2013. 27(17): p. 1845-50
  9. Eickelberg GJ,Fisher AJ
    Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.
    Biochem Mol Biol Educ, 2013 Sep-Oct. 41(5): p. 325-33
  10. Xiao D, et al.
    The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.
    J. Exp. Bot., 2013. 64(14): p. 4503-16
  11. Shafiq S,Berr A,Shen WH
    Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation.
    New Phytol., 2014. 201(1): p. 312-22
  12. Rataj K,Simpson GG
    Message ends: RNA 3' processing and flowering time control.
    J. Exp. Bot., 2014. 65(2): p. 353-63
  13. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
  14. Jones AL,Sung S
    Mechanisms underlying epigenetic regulation in Arabidopsis thaliana.
    Integr. Comp. Biol., 2014. 54(1): p. 61-7
  15. Müller-Xing R,Clarenz O,Pokorny L,Goodrich J,Schubert D
    Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana.
    Plant Cell, 2014. 26(6): p. 2457-2471
  16. Castaings L, et al.
    Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives.
    Nat Commun, 2014. 5: p. 4457
  17. Dittmar EL,Oakley CG,Ågren J,Schemske DW
    Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
    Mol. Ecol., 2014. 23(17): p. 4291-303
  18. Jali SS, et al.
    A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development.
    Plant J., 2014. 80(2): p. 242-54
  19. Schmalenbach I,Zhang L,Ryngajllo M,Jiménez-Gómez JM
    Functional analysis of the Landsberg erecta allele of FRIGIDA.
    BMC Plant Biol., 2014. 14: p. 218
  20. Crevillén P, et al.
    Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state.
    Nature, 2014. 515(7528): p. 587-90
  21. Suter L,Rüegg M,Zemp N,Hennig L,Widmer A
    Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
    Plant Physiol., 2014. 166(4): p. 1928-42
  22. Yasui Y,Kohchi T
    VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 repress the FLOWERING LOCUS C clade members to control flowering time in Arabidopsis.
    Biosci. Biotechnol. Biochem., 2014. 78(11): p. 1850-5
  23. Gillmor CS,Silva-Ortega CO,Willmann MR,Buendía-Monreal M,Poethig RS
    The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions.
    Development, 2014. 141(23): p. 4580-9
  24. Lee J,Yun JY,Zhao W,Shen WH,Amasino RM
    A methyltransferase required for proper timing of the vernalization response in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(7): p. 2269-74
  25. Bouché F,Detry N,Périlleux C
    Heat can erase epigenetic marks of vernalization in Arabidopsis.
    Plant Signal Behav, 2015. 10(3): p. e990799
  26. Zhang C, et al.
    The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development.
    Plant J., 2015. 82(4): p. 655-68
  27. Wells CE,Vendramin E,Jimenez Tarodo S,Verde I,Bielenberg DG
    A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch].
    BMC Plant Biol., 2015. 15: p. 41
  28. Luo M, et al.
    Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis.
    Plant J., 2015. 82(6): p. 925-36
  29. Müller-Xing R,Schubert D,Goodrich J
    Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana.
    Plant Signal Behav, 2015. 10(4): p. e1010868
  30. Berry S,Dean C
    Environmental perception and epigenetic memory: mechanistic insight through FLC.
    Plant J., 2015. 83(1): p. 133-48
  31. Berry S,Hartley M,Olsson TS,Dean C,Howard M
    Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance.
    Elife, 2016.
  32. Kang MY, et al.
    Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis.
    Sci Rep, 2015. 5: p. 9728
  33. Lyons R, et al.
    Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.
    PLoS ONE, 2015. 10(6): p. e0127699
  34. Kataya AR,Heidari B,Lillo C
    Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time--joint functions among B'η subfamily members.
    Plant Signal Behav, 2015. 10(5): p. e1026024
  35. Zhang Y, et al.
    Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation.
    Cell Res., 2015. 25(7): p. 864-76
  36. Hepworth J,Dean C
    Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation.
    Plant Physiol., 2015. 168(4): p. 1237-45
  37. Méndez-Vigo B, et al.
    Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
    Plant Cell Environ., 2016. 39(2): p. 282-94
  38. Duncan S, et al.
    Seasonal shift in timing of vernalization as an adaptation to extreme winter.
    Elife, 2016.
  39. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
  40. Cao Y,Wen L,Wang Z,Ma L
    SKIP Interacts with the Paf1 Complex to Regulate Flowering via the Activation of FLC Transcription in Arabidopsis.
    Mol Plant, 2015. 8(12): p. 1816-9
  41. Xiao J, et al.
    JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis.
    Plant Physiol., 2015. 169(3): p. 2102-17
  42. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
  43. Finnegan EJ
    Time-dependent stabilization of the +1 nucleosome is an early step in the transition to stable cold-induced repression of FLC.
    Plant J., 2015. 84(5): p. 875-85
  44. Shu K, et al.
    ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription.
    J. Exp. Bot., 2016. 67(1): p. 195-205
  45. Kang MY,Kwon HY,Kim NY,Sakuraba Y,Paek NC
    CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non-Inductive Short Days in Arabidopsis.
    Int J Mol Sci, 2015. 16(11): p. 26493-505
  46. Li M, et al.
    DELLA proteins interact with FLC to repress flowering transition.
    J Integr Plant Biol, 2016. 58(7): p. 642-55
  47. Franks SJ, et al.
    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.
    PeerJ, 2015. 3: p. e1339
  48. Sanchez-Bermejo E,Balasubramanian S
    Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana.
    Plant Cell Environ., 2016. 39(6): p. 1353-65
  49. Burghardt LT, et al.
    Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana.
    New Phytol., 2016. 210(2): p. 564-76
  50. Tang Q, et al.
    The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana.
    Planta, 2016. 243(4): p. 909-23
  51. Wu Z, et al.
    RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.
    Plant Cell, 2016. 28(1): p. 55-73
  52. Liu B, et al.
    Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Biochim. Biophys. Acta, 2016. 1859(4): p. 581-90
  53. Shi H,Wei Y,Wang Q,Reiter RJ,He C
    Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis.
    J. Pineal Res., 2016. 60(3): p. 373-9
  54. Saleh A,Alvarez-Venegas R,Liu N,Avramova Z
    Corrigendum to "Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci" [Gene. 2008 Oct. 15; 423(1):43-47].
    Gene, 2016. 585(2): p. 266-7
  55. Mahrez W, et al.
    BRR2a Affects Flowering Time via FLC Splicing.
    PLoS Genet., 2016. 12(4): p. e1005924
  56. Kwak JS,Son GH,Kim SI,Song JT,Seo HS
    Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity.
    Front Plant Sci, 2016. 7: p. 530
  57. Nishio H, et al.
    From the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleri.
    Genes Genet. Syst., 2016. 91(1): p. 15-26
  58. Li Z, et al.
    Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex.
    Nat Plants, 2016. 2: p. 16015
  59. Yang H,Howard M,Dean C
    Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(33): p. 9369-74
  60. Zhang Y,Rataj K,Simpson GG,Tong L
    Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA.
    PLoS ONE, 2016. 11(8): p. e0160694
  61. Feng P, et al.
    Chloroplast retrograde signal regulates flowering.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(38): p. 10708-13
  62. Park HJ,Kim WY,Pardo JM,Yun DJ
    Molecular Interactions Between Flowering Time and Abiotic Stress Pathways.
    Int Rev Cell Mol Biol, 2016. 327: p. 371-412
  63. Rosa S,Duncan S,Dean C
    Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression.
    Nat Commun, 2016. 7: p. 13031
  64. Yuan W, et al.
    A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis.
    Nat. Genet., 2016. 48(12): p. 1527-1534
  65. Gong X,Shen L,Peng YZ,Gan Y,Yu H
    DNA Topoisomerase Iα Affects the Floral Transition.
    Plant Physiol., 2017. 173(1): p. 642-654
  66. Ågren J,Oakley CG,Lundemo S,Schemske DW
    Adaptive divergence in flowering time among natural populations of Arabidopsis thaliana: Estimates of selection and QTL mapping.
    Evolution, 2017. 71(3): p. 550-564
  67. Li C,Cui Y
    A DNA element that remembers winter.
    Nat. Genet., 2016. 48(12): p. 1451-1452
  68. Kong X,Luo X,Qu GP,Liu P,Jin JB
    Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    J Integr Plant Biol, 2017. 59(1): p. 15-29
  69. Kapolas G, et al.
    APRF1 promotes flowering under long days in Arabidopsis thaliana.
    Plant Sci., 2016. 253: p. 141-153
  70. Sharma N, et al.
    A Flowering Locus C Homolog Is a Vernalization-Regulated Repressor in Brachypodium and Is Cold Regulated in Wheat.
    Plant Physiol., 2017. 173(2): p. 1301-1315
  71. Huang B,Qian P,Gao N,Shen J,Hou S
    Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis.
    Planta, 2017. 245(5): p. 939-950
  72. Kim DH,Sung S
    Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs.
    Dev. Cell, 2017. 40(3): p. 302-312.e4
  73. Zhu A,Greaves IK,Dennis ES,Peacock WJ
    Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.
    BMC Genomics, 2017. 18(1): p. 137
  74. Lu C, et al.
    Phosphorylation of SPT5 by CDKD;2 Is Required for VIP5 Recruitment and Normal Flowering in Arabidopsis thaliana.
    Plant Cell, 2017. 29(2): p. 277-291
  75. Denis E, et al.
    WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
    Plant J., 2017. 90(3): p. 560-572
  76. Nasim Z,Fahim M,Ahn JH
    Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.
    Front Plant Sci, 2017. 8: p. 191
  77. Kiefer C, et al.
    Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues.
    Mol. Ecol., 2017. 26(13): p. 3437-3457
  78. Yan Q,Xia X,Sun Z,Fang Y
    Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.
    PLoS Genet., 2017. 13(3): p. e1006663
  79. Kasulin L, et al.
    A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina.
    Mol. Ecol., 2017. 26(13): p. 3389-3404
  80. Auge GA,Blair LK,Neville H,Donohue K
    Maternal vernalization and vernalization-pathway genes influence progeny seed germination.
    New Phytol., 2017. 216(2): p. 388-400
  81. Zhou Y,Romero-Campero FJ,Gómez-Zambrano Á,Turck F,Calonje M
    H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity.
    Genome Biol., 2017. 18(1): p. 69
  82. Kim DH,Sung S
    Accelerated vernalization response by an altered PHD-finger protein in Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1308619
  83. Nakamura M,Hennig L
    Inheritance of vernalization memory at FLOWERING LOCUS C during plant regeneration.
    J. Exp. Bot., 2017. 68(11): p. 2813-2819
  84. He R, et al.
    A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.
    Plant J., 2017. 91(5): p. 788-801
  85. Ietswaart R,Rosa S,Wu Z,Dean C,Howard M
    Cell-Size-Dependent Transcription of FLC and Its Antisense Long Non-coding RNA COOLAIR Explain Cell-to-Cell Expression Variation.
    Cell Syst, 2017. 4(6): p. 622-635.e9
  86. Kim D,Abdelaziz ME,Ntui VO,Guo X,Al-Babili S
    Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis.
    Biochem. Biophys. Res. Commun., 2017. 490(4): p. 1162-1167
  87. Whittaker C,Dean C
    The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation.
    Annu. Rev. Cell Dev. Biol., 2017. 33: p. 555-575
  88. Kim DH,Xi Y,Sung S
    Modular function of long noncoding RNA, COLDAIR, in the vernalization response.
    PLoS Genet., 2017. 13(7): p. e1006939
  89. Yang H, et al.
    Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis.
    Science, 2017. 357(6356): p. 1142-1145
  90. Cheng JZ,Zhou YP,Lv TX,Xie CP,Tian CE
    Research progress on the autonomous flowering time pathway in Arabidopsis.
    Physiol Mol Biol Plants, 2017. 23(3): p. 477-485
  91. Cui Z, et al.
    SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis.
    BMC Biol., 2017. 15(1): p. 80
  92. Tao Z, et al.
    Embryonic epigenetic reprogramming by a pioneer transcription factor in plants.
    Nature, 2017. 551(7678): p. 124-128
  93. Yan Z,Jia J,Yan X,Shi H,Han Y
    Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.
    Plant Mol. Biol., 2017. 95(6): p. 549-565
  94. Eom H, et al.
    TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Plant J., 2018. 93(1): p. 79-91
  95. Sang S,Chen Y,Yang Q,Wang P
    Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of FLOWERING LOCUS C.
    J. Exp. Bot., 2017. 68(21-22): p. 5787-5800
  96. Chen Q, et al.
    Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 495(1): p. 1102-1107
  97. Mateos JL, et al.
    Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(51): p. E11037-E11046
  98. Zhou JX, et al.
    Arabidopsis PWWP domain proteins mediate H3K27 trimethylation on FLC and regulate flowering time.
    J Integr Plant Biol, 2018. 60(5): p. 362-368
  99. Hepworth J, et al.
    Absence of warmth permits epigenetic memory of winter in Arabidopsis.
    Nat Commun, 2018. 9(1): p. 639
  100. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
  101. Kumar S,Choudhary P,Gupta M,Nath U
    VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 Interact with CONSTANS and Promote Photoperiodic Flowering Transition.
    Plant Physiol., 2018. 176(4): p. 2917-2930
  102. Wu B, et al.
    Structural insight into the role of VAL1 B3 domain for targeting to FLC locus in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 501(2): p. 415-422
  103. Chen M,Penfield S
    Feedback regulation of COOLAIR expression controls seed dormancy and flowering time.
    Science, 2018. 360(6392): p. 1014-1017
  104. Li Z,Ou Y,Zhang Z,Li J,He Y
    Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis.
    Mol Plant, 2018. 11(9): p. 1135-1146
  105. Richter R, et al.
    Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications.
    PLoS Genet., 2019. 15(4): p. e1008065