PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID DCAR_018158
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; campanulids; Apiales; Apiineae; Apiaceae; Apioideae; Scandiceae; Daucinae; Daucus
Family ERF
Protein Properties Length: 222aa    MW: 24836.8 Da    PI: 5.1839
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
DCAR_018158genomeARS-USDAView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP252.71.1e-1663112255
          AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                   y+G+r++  +++Wv+e+r+p   +k+ r++lg+f tae+Aa+a++ a ++l+g
  DCAR_018158  63 IYRGIRRRN-SNKWVSEVREP---NKKNRIWLGTFATAEMAARAHDVAVLALRG 112
                  69****888.8******9998...3369************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000188.45E-3062122No hitNo description
PfamPF008473.1E-1162112IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.103.3E-3063122IPR001471AP2/ERF domain
SuperFamilySSF541713.53E-2063122IPR016177DNA-binding domain
SMARTSM003801.0E-2863126IPR001471AP2/ERF domain
PROSITE profilePS5103221.39163120IPR001471AP2/ERF domain
PRINTSPR003676.2E-86475IPR001471AP2/ERF domain
PRINTSPR003676.2E-886102IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 222 aa     Download sequence    Send to blast
MMNNTIFSEY SNSCKLYNLY SLDAASDSSS STEGSSDSPV MLASSDAKKR CGRKKFRETR  60
HPIYRGIRRR NSNKWVSEVR EPNKKNRIWL GTFATAEMAA RAHDVAVLAL RGRSACLNFA  120
DSAWRLRLPT STNAKDIQKA AAEAAEAFRS TCEDGEVVEE TSEVMLPRNV YDVDEEVAEF  180
GMPGQLIAEM AQGMMLPPPH QYYCEGDDNV EFCAEMSLWN Y*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5wx9_A1e-13611191271Ethylene-responsive transcription factor ERF096
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress (PubMed:9735350). Subject to degradation by the 26S proteasome pathway in freezing conditions (PubMed:28344081). {ECO:0000269|PubMed:28344081, ECO:0000269|PubMed:9735350}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_017250398.11e-166PREDICTED: dehydration-responsive element-binding protein 1A-like
SwissprotP938352e-67DRE1B_ARATH; Dehydration-responsive element-binding protein 1B
TrEMBLA0A161XT751e-165A0A161XT75_DAUCS; Uncharacterized protein
STRINGXP_008234474.19e-79(Prunus mume)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA26324183
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G25490.12e-68C-repeat/DRE binding factor 1
Publications ? help Back to Top
  1. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  2. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  3. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  4. Bello B, et al.
    Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance.
    PLoS ONE, 2014. 9(11): p. e112269
    [PMID:25393623]
  5. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  6. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  7. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  8. Catalá R,Salinas J
    The Arabidopsis ethylene overproducer mutant eto1-3 displays enhanced freezing tolerance.
    Plant Signal Behav, 2015. 10(3): p. e989768
    [PMID:25850018]
  9. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  10. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  11. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  12. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  13. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  14. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  15. Wei T, et al.
    Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth.
    Plant Physiol. Biochem., 2016. 104: p. 17-28
    [PMID:27002402]
  16. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  17. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  18. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  19. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  20. Li P, et al.
    The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation.
    Plant J., 2017. 89(1): p. 85-103
    [PMID:27599367]
  21. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  22. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  23. Zhou M,Chen H,Wei D,Ma H,Lin J
    Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature.
    Sci Rep, 2017. 7: p. 39819
    [PMID:28051152]
  24. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
    [PMID:28089951]
  25. Liu Z, et al.
    Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.
    Mol. Cell, 2017. 66(1): p. 117-128.e5
    [PMID:28344081]
  26. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  27. Yang L, et al.
    Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.
    Plant Physiol. Biochem., 2017. 117: p. 1-11
    [PMID:28575641]
  28. Carlow CE, et al.
    Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains.
    Plant Physiol. Biochem., 2017. 118: p. 306-319
    [PMID:28675818]
  29. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  30. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  31. Meng LS,Xu MK,Wan W,Wang JY
    Integration of Environmental and Developmental (or Metabolic) Control of Seed Mass by Sugar and Ethylene Metabolisms in Arabidopsis.
    J. Agric. Food Chem., 2018. 66(13): p. 3477-3488
    [PMID:29528636]