PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Cc07_g21360
Common NameGSCOC_T00016945001
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Gentianales; Rubiaceae; Ixoroideae; Coffeeae; Coffea
Family AP2
Protein Properties Length: 431aa    MW: 48629.2 Da    PI: 4.4908
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Cc07_g21360genomeCGSCView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP232.81.8e-10860855
          AP2  8 wdkkrgrWvAeIrd.pseng...kr.krfslgkfgtaeeAakaaiaarkkleg 55
                 +++++gr++A+++d  ++n    k+ ++++lg ++ +e Aa+ ++ a++k++g
  Cc07_g21360  8 RHRWTGRFEAHLWDkTTWNAiqtKKgRQIYLGAYDNEEAAARTYDLAALKYWG 60
                 599***********666699988557*************************98 PP

2AP2574.8e-18103154155
          AP2   1 sgykGVrwdkkrgrWvAeIrd.psengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                  s+y+GV +++ +grW+A+I   +   g +k+ +lg++gt eeAa a++ a+++++g
  Cc07_g21360 103 SKYRGVARHHHNGRWEARIGRvF---G-NKYLYLGTYGTQEEAAMAYDLAALEYRG 154
                  89****99**********99966...3.6*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5103216.99168IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.102.1E-12769IPR001471AP2/ERF domain
SuperFamilySSF541711.9E-12870IPR016177DNA-binding domain
CDDcd000181.55E-14868No hitNo description
SMARTSM003802.2E-14874IPR001471AP2/ERF domain
PfamPF008471.2E-6860IPR001471AP2/ERF domain
SuperFamilySSF541715.56E-18103164IPR016177DNA-binding domain
CDDcd000181.47E-25103164No hitNo description
PfamPF008473.7E-14103154IPR001471AP2/ERF domain
PROSITE profilePS5103218.465104162IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.107.8E-18104162IPR001471AP2/ERF domain
SMARTSM003804.2E-27104168IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006110Biological Processregulation of glycolytic process
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009744Biological Processresponse to sucrose
GO:0019432Biological Processtriglyceride biosynthetic process
GO:1901959Biological Processpositive regulation of cutin biosynthetic process
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 431 aa     Download sequence    Send to blast
MEFVLMIRHR WTGRFEAHLW DKTTWNAIQT KKGRQIYLGA YDNEEAAART YDLAALKYWG  60
PGTILNFPLE IYSGELEEME KLTKEEYLTT LRRRSSGFSR GVSKYRGVAR HHHNGRWEAR  120
IGRVFGNKYL YLGTYGTQEE AAMAYDLAAL EYRGSSAVTN FDISRYADKL KTLQKMHTEN  180
PESSTEKQVD EQEDHEEQVQ EEKLVAELNV PNIATTKSES QDNLGQHLQQ KKPVAEPTVS  240
NVAATEPEQI VMMDPADEHE DHWNLCLDTA LNSLPVSDIT FEKTAELPNL FTDAGFEASI  300
DFIFDAPFDI DGFIEEDAAG SPAFEIDVDS FLRGEEKEPE ATTSPSQSSS STITSRSSIE  360
DALLENGLLH RAVRRNCRSM VEVLLRYHPD ADLIAARCDG AEQVLDALTD NLGLVQLFLV  420
CILLLAEHYF *
Functional Description ? help Back to Top
Source Description
UniProtMay be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. Negative regulator of the ABA-mediated germination inhibition. {ECO:0000250, ECO:0000269|PubMed:12084821, ECO:0000269|PubMed:15500472, ECO:0000269|PubMed:15753106, ECO:0000269|PubMed:16553903, ECO:0000269|PubMed:16632590, ECO:0000269|PubMed:9733529}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transiantly in leaves by sucrose, but not by abscisic acid (ABA). {ECO:0000269|PubMed:15753106}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_027158350.10.0AP2-like ethylene-responsive transcription factor At1g79700
SwissprotQ6X5Y62e-99WRI1_ARATH; Ethylene-responsive transcription factor WRI1
TrEMBLA0A068V5Q40.0A0A068V5Q4_COFCA; Uncharacterized protein
STRINGMigut.B01163.1.p1e-115(Erythranthe guttata)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA91342227
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G54320.38e-72AP2 family protein
Publications ? help Back to Top
  1. Kim HU, et al.
    Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.
    FEBS Open Bio, 2013. 4: p. 25-32
    [PMID:24363987]
  2. Wu XL,Liu ZH,Hu ZH,Huang RZ
    BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.
    J Integr Plant Biol, 2014. 56(6): p. 582-93
    [PMID:24393360]
  3. Shigematsu H, et al.
    Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.
    PLoS ONE, 2014. 9(1): p. e87724
    [PMID:24475319]
  4. Kim HU, et al.
    Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.
    Plant Biotechnol. J., 2015. 13(9): p. 1346-59
    [PMID:25790072]
  5. Grimberg Å,Carlsson AS,Marttila S,Bhalerao R,Hofvander P
    Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
    BMC Plant Biol., 2015. 15: p. 192
    [PMID:26253704]
  6. Kanai M,Mano S,Kondo M,Hayashi M,Nishimura M
    Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Plant Biotechnol. J., 2016. 14(5): p. 1241-50
    [PMID:26503031]
  7. Li Q, et al.
    Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.
    Front Plant Sci, 2015. 6: p. 1015
    [PMID:26635841]
  8. Hofvander P, et al.
    Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.
    Plant Biotechnol. J., 2016. 14(9): p. 1883-98
    [PMID:26914183]
  9. Shen SL, et al.
    CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange.
    J. Exp. Bot., 2016. 67(14): p. 4105-15
    [PMID:27194737]
  10. Adhikari ND,Bates PD,Browse J
    WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.
    Plant Physiol., 2016. 171(1): p. 179-91
    [PMID:27208047]
  11. Kim MJ,Jang IC,Chua NH
    The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.
    Plant Physiol., 2016. 171(3): p. 1951-64
    [PMID:27246098]
  12. Bhattacharya S,Das N,Maiti MK
    Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.
    Plant Physiol. Biochem., 2016. 107: p. 204-213
    [PMID:27314514]
  13. Ma W, et al.
    14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.
    Plant J., 2016. 88(2): p. 228-235
    [PMID:27322486]
  14. Li D, et al.
    MYB89 Transcription Factor Represses Seed Oil Accumulation.
    Plant Physiol., 2017. 173(2): p. 1211-1225
    [PMID:27932421]
  15. Ivarson E, et al.
    Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre.
    Front Plant Sci, 2016. 7: p. 2032
    [PMID:28119714]
  16. An D, et al.
    Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves.
    Front Plant Sci, 2017. 8: p. 34
    [PMID:28174580]
  17. Zhai Z,Liu H,Shanklin J
    Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis.
    Plant Cell, 2017. 29(4): p. 871-889
    [PMID:28314829]
  18. Jin J, et al.
    Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.
    Sci Rep, 2017. 7(1): p. 439
    [PMID:28348403]
  19. Kong Q, et al.
    The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.
    J. Exp. Bot., 2017. 68(16): p. 4627-4634
    [PMID:28981783]
  20. Kang NK, et al.
    Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina.
    Biotechnol Biofuels, 2017. 10: p. 231
    [PMID:29046718]
  21. Pellaud S, et al.
    WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis.
    New Phytol., 2018. 217(1): p. 245-260
    [PMID:29105089]
  22. Hanano A,Almousally I,Shaban M,Murphy DJ
    Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1.
    J. Exp. Bot., 2018. 69(7): p. 1781-1794
    [PMID:29394403]