PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID C.cajan_20579
Common NameKK1_021194
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Cajanus
Family M-type_MADS
Protein Properties Length: 77aa    MW: 8794.21 Da    PI: 10.6239
Description M-type_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
C.cajan_20579genomeIIPGView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF99.21.6e-31958150
                   S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE CS
         SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeys 50
                   krien + rqvtfskRrng+lKKA+ELSvLCdaeva+iifs++gklye++
  C.cajan_20579  9 KRIENATSRQVTFSKRRNGLLKKAFELSVLCDAEVALIIFSPRGKLYEFA 58
                   79***********************************************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5006631.581161IPR002100Transcription factor, MADS-box
SMARTSM004325.3E-41160IPR002100Transcription factor, MADS-box
CDDcd002652.78E-37360No hitNo description
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PRINTSPR004046.9E-32323IPR002100Transcription factor, MADS-box
SuperFamilySSF554553.27E-30372IPR002100Transcription factor, MADS-box
PfamPF003195.2E-281057IPR002100Transcription factor, MADS-box
PRINTSPR004046.9E-322338IPR002100Transcription factor, MADS-box
PRINTSPR004046.9E-323859IPR002100Transcription factor, MADS-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 77 aa     Download sequence    Send to blast
MVRGKTQMKR IENATSRQVT FSKRRNGLLK KAFELSVLCD AEVALIIFSP RGKLYEFANS  60
RYCSPFSSFS NFPFSCS
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6byy_A4e-18171181MEF2 CHIMERA
6byy_B4e-18171181MEF2 CHIMERA
6byy_C4e-18171181MEF2 CHIMERA
6byy_D4e-18171181MEF2 CHIMERA
6bz1_A4e-18171181MEF2 CHIMERA
6bz1_B4e-18171181MEF2 CHIMERA
6bz1_C4e-18171181MEF2 CHIMERA
6bz1_D4e-18171181MEF2 CHIMERA
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription activator active in flowering time control. May integrate signals from the photoperiod, vernalization and autonomous floral induction pathways. Can modulate class B and C homeotic genes expression. When associated with AGL24, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral development. {ECO:0000269|PubMed:10995392, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:18466303, ECO:0000269|PubMed:19656343}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapC.cajan_20579
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by gibberellins, vernalization and under long-day conditions. Gradual increase during vegetative growth. Induced by AGL24 at the shoot apex at the floral transitional stage. Repressed by SVP during the early stages of flower development. Inhibited by AP1 in emerging floral meristems (PubMed:17428825, PubMed:18339670, PubMed:19656343). Repressed by SHL to prevent flowering (PubMed:25281686). {ECO:0000269|PubMed:17428825, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:19656343, ECO:0000269|PubMed:25281686}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankGU1429141e-51GU142914.1 Hevea brasiliensis MADS-box transcription factor 2 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_007134936.11e-37hypothetical protein PHAVU_010G088100g
RefseqXP_007134937.11e-37hypothetical protein PHAVU_010G088100g
RefseqXP_020220768.17e-36MADS-box protein SOC1
RefseqXP_029127631.17e-36MADS-box protein SOC1
RefseqXP_029127634.17e-36MADS-box protein SOC1
RefseqXP_029127637.17e-36MADS-box protein SOC1
RefseqXP_029127638.17e-36MADS-box protein SOC1
RefseqXP_029127641.17e-36MADS-box protein SOC1
RefseqXP_029127643.17e-36MADS-box protein SOC1
SwissprotO646456e-35SOC1_ARATH; MADS-box protein SOC1
TrEMBLA0A151UCJ08e-49A0A151UCJ0_CAJCA; MADS-box protein SOC1
STRINGXP_007134936.14e-37(Phaseolus vulgaris)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF11933360
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G45660.12e-37AGAMOUS-like 20
Publications ? help Back to Top
  1. Ramamoorthy R,Phua EE,Lim SH,Tan HT,Kumar PP
    Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    PLoS ONE, 2013. 8(6): p. e67243
    [PMID:23840638]
  2. Heidari B,Nemie-Feyissa D,Kangasjärvi S,Lillo C
    Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A.
    PLoS ONE, 2013. 8(7): p. e67987
    [PMID:23976921]
  3. Mouhu K, et al.
    The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.
    Plant Cell, 2013. 25(9): p. 3296-310
    [PMID:24038650]
  4. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
    [PMID:24055423]
  5. Fu J, et al.
    Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Plant Physiol. Biochem., 2014. 74: p. 230-8
    [PMID:24316581]
  6. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
    [PMID:24639681]
  7. Preston JC,Jorgensen SA,Jha SG
    Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.
    PLoS ONE, 2014. 9(5): p. e96108
    [PMID:24787903]
  8. Berr A,Shafiq S,Pinon V,Dong A,Shen WH
    The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway.
    Plant J., 2015. 81(2): p. 316-28
    [PMID:25409787]
  9. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
    [PMID:25719734]
  10. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
    [PMID:25948280]
  11. Kang MY, et al.
    Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis.
    Sci Rep, 2015. 5: p. 9728
    [PMID:25962685]
  12. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
    [PMID:26098376]
  13. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  14. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  15. Li M, et al.
    DELLA proteins interact with FLC to repress flowering transition.
    J Integr Plant Biol, 2016. 58(7): p. 642-55
    [PMID:26584710]
  16. Franks SJ, et al.
    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.
    PeerJ, 2015. 3: p. e1339
    [PMID:26644966]
  17. Liu B, et al.
    Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Biochim. Biophys. Acta, 2016. 1859(4): p. 581-90
    [PMID:26854085]
  18. Liu XR, et al.
    Overexpression of an Orchid (Dendrobium nobile) SOC1/TM3-Like Ortholog, DnAGL19, in Arabidopsis Regulates HOS1-FT Expression.
    Front Plant Sci, 2016. 7: p. 99
    [PMID:26904066]
  19. Davin N, et al.
    Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
    Plant J., 2016. 86(5): p. 376-90
    [PMID:26952251]
  20. Del Olmo I, et al.
    Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.
    Nucleic Acids Res., 2016. 44(12): p. 5597-614
    [PMID:26980282]
  21. Mahrez W, et al.
    BRR2a Affects Flowering Time via FLC Splicing.
    PLoS Genet., 2016. 12(4): p. e1005924
    [PMID:27100965]
  22. Hyun Y, et al.
    Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.
    Dev. Cell, 2016. 37(3): p. 254-66
    [PMID:27134142]
  23. He L, et al.
    Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.
    Plant Physiol., 2016. 171(3): p. 1675-85
    [PMID:27208260]
  24. Alter P, et al.
    Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
    Plant Physiol., 2016. 172(1): p. 389-404
    [PMID:27457125]
  25. Xu C,Yu Y,Zhang Y,Li Y,Wei S
    Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Bioelectromagnetics, 2017. 38(1): p. 1-10
    [PMID:27598690]
  26. Riboni M,Robustelli Test A,Galbiati M,Tonelli C,Conti L
    ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(22): p. 6309-6322
    [PMID:27733440]
  27. Kong X,Luo X,Qu GP,Liu P,Jin JB
    Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    J Integr Plant Biol, 2017. 59(1): p. 15-29
    [PMID:27925396]
  28. Kapolas G, et al.
    APRF1 promotes flowering under long days in Arabidopsis thaliana.
    Plant Sci., 2016. 253: p. 141-153
    [PMID:27968983]
  29. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
    [PMID:28089951]
  30. Chen J, et al.
    Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.
    Plant Physiol., 2017. 173(3): p. 1881-1891
    [PMID:28096189]
  31. Denis E, et al.
    WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
    Plant J., 2017. 90(3): p. 560-572
    [PMID:28218997]
  32. Nasim Z,Fahim M,Ahn JH
    Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.
    Front Plant Sci, 2017. 8: p. 191
    [PMID:28261246]
  33. Wilson DC,Kempthorne CJ,Carella P,Liscombe DK,Cameron RK
    Age-Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae.
    Mol. Plant Microbe Interact., 2017. 30(11): p. 919-929
    [PMID:28812948]
  34. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
    [PMID:29027578]
  35. Jamge S,Stam M,Angenent GC,Immink RGH
    A cautionary note on the use of chromosome conformation capture in plants.
    Plant Methods, 2017. 13: p. 101
    [PMID:29177001]
  36. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
    [PMID:29447428]