PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G49450.1
Common NameAtbZIP1, bZIP1, K7J8.13
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 145aa    MW: 16224.3 Da    PI: 9.7147
Description basic leucine-zipper 1
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G49450.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       bZIP_1  4 lkrerrkqkNReAArrsRqRKkaeie.......eLeekvkeLeaeNkaLkkeleelkkevaklksev 63
                  k+ +rk +NRe+ArrsR++K++ +e        Le+++ke ++  +a k++l++ + e a l+se+
                 5999******************966522222227999999999999999999999999999888875 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA: hitNo description
SMARTSM003381.3E-81276IPR004827Basic-leucine zipper domain
PfamPF077168.3E-61455IPR004827Basic-leucine zipper domain
PROSITE profilePS502179.0021477IPR004827Basic-leucine zipper domain
SuperFamilySSF579591.59E-61667No hitNo description
CDDcd147022.26E-131768No hitNo description
PROSITE patternPS0003601934IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006521Biological Processregulation of cellular amino acid metabolic process
GO:0009267Biological Processcellular response to starvation
GO:0009617Biological Processresponse to bacterium
GO:0009651Biological Processresponse to salt stress
GO:0009901Biological Processanther dehiscence
GO:0010182Biological Processsugar mediated signaling pathway
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0071333Biological Processcellular response to glucose stimulus
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
GO:0046982Molecular Functionprotein heterodimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
PO:0025195anatomypollen tube cell
PO:0001016developmental stageL mature pollen stage
PO:0001017developmental stageM germinated pollen stage
Sequence ? help Back to Top
Protein Sequence    Length: 145 aa     Download sequence    Send to blast
Nucleic Localization Signal ? help Back to Top
No. Start End Sequence
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.265730.0leaf| root
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G49450-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed in seeds during late stage of development. {ECO:0000269|PubMed:18841482}.
UniprotTISSUE SPECIFICITY: Expressed in both shoots, including young leaves, stipulae and trichomes (except in cotyledons and hypocotyl), and roots, including vascular tissues (e.g. in both the phloem and the xylem). Present in seeds and pollen. Restricted to vasculatures and roots in the presence of sucrose or glucose. {ECO:0000269|PubMed:18841482, ECO:0000269|PubMed:20080816}.
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor that binds to the C-box-like motif (5'-TGCTGACGTCA-3') and G-box-like motif (5'-CCACGTGGCC-3'), ABRE elements, of gene promoters involved in sugar signaling. Activated by low energy stress both at transcriptional and post-transcriptional mechanisms. Promotes dark-induced senescence and participates in the transcriptional reprogramming of amino acid metabolism during the dark-induced starvation response (PubMed:20080816, PubMed:21278122). Transcription activator of the mannan synthase CSLA9. Recognizes and binds to DNA-specific sequence of CSLA9 promoter (PubMed:24243147). {ECO:0000269|PubMed:20080816, ECO:0000269|PubMed:21278122, ECO:0000269|PubMed:24243147}.
Function -- GeneRIF ? help Back to Top
  1. Data show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZIP1 and the C-group AtbZIPs, including AtbZIP10 and AtbZIP63.
    [PMID: 20080816]
  2. bZIP1 and bZIP53 expression is enhanced during dark-induced starvation. Heterodimerization with members of the partially redundant C/S1 bZIP factor network reprograms primary metabolism in the starvation response.
    [PMID: 21278122]
  3. Data indicate that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.
    [PMID: 24243147]
  4. promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1.
    [PMID: 24958886]
  5. Data show that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism.
    [PMID: 26276836]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Reversibly repressed by glucose and mannose. Slowly induced by Pseudomonas syringae. Induced in roots upon cold and salt stress but then repressed in leaves. Promoted by low energy stress and dark-induced starvation. {ECO:0000269|PubMed:18841482, ECO:0000269|PubMed:20080816, ECO:0000269|PubMed:21278122}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G01570 (A), AT2G46830 (R)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G13600, AT1G59530, AT1G75390
IntActSearch Q9FGX2
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Reduced requirement for exogenous sugar for seedling growth and higher rates of true leaf development. {ECO:0000269|PubMed:20080816}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G49450
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0230340.0AB023034.1 Arabidopsis thaliana genomic DNA, chromosome 5, TAC clone:K7J8.
GenBankAF4006180.0AF400618.1 Arabidopsis thaliana transcription factor-like protein bZIP1 mRNA, complete cds.
GenBankAY0882070.0AY088207.1 Arabidopsis thaliana clone 43004 mRNA, complete sequence.
GenBankAY1363070.0AY136307.1 Arabidopsis thaliana putative protein (At5g49450) mRNA, complete cds.
GenBankBT0004000.0BT000400.1 Arabidopsis thaliana putative protein (At5g49450) mRNA, complete cds.
GenBankCP0026880.0CP002688.1 Arabidopsis thaliana chromosome 5 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_199756.11e-102basic leucine-zipper 1
SwissprotQ9FGX21e-103BZIP1_ARATH; Basic leucine zipper 1
TrEMBLA0A178UPE41e-101A0A178UPE4_ARATH; Uncharacterized protein
STRINGAT5G49450.11e-102(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1379334
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
  3. Dal Bosco C, et al.
    Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana.
    J. Biol. Chem., 2004. 279(2): p. 1060-9
  4. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  5. Jiao Y, et al.
    A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development.
    Plant Physiol., 2003. 133(4): p. 1480-93
  6. Satoh R,Fujita Y,Nakashima K,Shinozaki K,Yamaguchi-Shinozaki K
    A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.
    Plant Cell Physiol., 2004. 45(3): p. 309-17
  7. Wiese A,Elzinga N,Wobbes B,Smeekens S
    A conserved upstream open reading frame mediates sucrose-induced repression of translation.
    Plant Cell, 2004. 16(7): p. 1717-29
  8. Deppmann CD, et al.
    Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs.
    Nucleic Acids Res., 2004. 32(11): p. 3435-45
  9. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
  10. Price J,Laxmi A,St Martin SK,Jang JC
    Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis.
    Plant Cell, 2004. 16(8): p. 2128-50
  11. Contento AL,Kim SJ,Bassham DC
    Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation.
    Plant Physiol., 2004. 135(4): p. 2330-47
  12. Suzuki N, et al.
    Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c.
    Plant Physiol., 2005. 139(3): p. 1313-22
  13. Vergnolle C, et al.
    The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.
    Plant Physiol., 2005. 139(3): p. 1217-33
  14. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
  15. Ehlert A, et al.
    Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors.
    Plant J., 2006. 46(5): p. 890-900
  16. Deppmann CD,Alvania RS,Taparowsky EJ
    Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks.
    Mol. Biol. Evol., 2006. 23(8): p. 1480-92
  17. Osuna D, et al.
    Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings.
    Plant J., 2007. 49(3): p. 463-91
  18. de Torres-Zabala M, et al.
    Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
    EMBO J., 2007. 26(5): p. 1434-43
  19. Popescu SC, et al.
    Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(11): p. 4730-5
  20. Hayden CA,Jorgensen RA
    Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes.
    BMC Biol., 2007. 5: p. 32
  21. Usadel B, et al.
    Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
    Plant Physiol., 2008. 146(4): p. 1834-61
  22. Gutiérrez RA, et al.
    Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(12): p. 4939-44
  23. Hou X, et al.
    Global identification of DELLA target genes during Arabidopsis flower development.
    Plant Physiol., 2008. 147(3): p. 1126-42
  24. Mentzen WI,Peng J,Ransom N,Nikolau BJ,Wurtele ES
    Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism.
    BMC Plant Biol., 2008. 8: p. 76
  25. Wang Y, et al.
    Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis.
    Plant Physiol., 2008. 148(3): p. 1201-11
  26. Weltmeier F, et al.
    Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development.
    Plant Mol. Biol., 2009. 69(1-2): p. 107-19
  27. Kang SG,Price J,Lin PC,Hong JC,Jang JC
    The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding.
    Mol Plant, 2010. 3(2): p. 361-73
  28. Obertello M,Krouk G,Katari MS,Runko SJ,Coruzzi GM
    Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis.
    BMC Syst Biol, 2010. 4: p. 111
  29. Brady SM, et al.
    A stele-enriched gene regulatory network in the Arabidopsis root.
    Mol. Syst. Biol., 2011. 7: p. 459
  30. Dietrich K, et al.
    Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress.
    Plant Cell, 2011. 23(1): p. 381-95
  31. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
  32. Sun X, et al.
    The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses.
    J. Plant Res., 2012. 125(3): p. 429-38
  33. Renault H, et al.
    γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.
    Plant Cell Environ., 2013. 36(5): p. 1009-18
  34. Kim WC, et al.
    Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.
    Plant Mol. Biol., 2014. 84(4-5): p. 577-87
  35. Para A, et al.
    Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(28): p. 10371-6
  36. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  37. Mair A, et al.
    SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants.
    Elife, 2016.
  38. Hartmann L, et al.
    Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots.
    Plant Cell, 2015. 27(8): p. 2244-60
  39. Doidy J, et al.
    "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".
    BMC Genomics, 2016. 17: p. 92
  40. Dash M, et al.
    Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress.
    Plant J., 2017. 89(4): p. 692-705
  41. Ezer D, et al.
    The G-Box Transcriptional Regulatory Code in Arabidopsis.
    Plant Physiol., 2017. 175(2): p. 628-640
  42. Lee DH,Park SJ,Ahn CS,Pai HS
    MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway.
    Plant Cell, 2017. 29(11): p. 2895-2920
  43. Pedrotti L, et al.
    Snf1-RELATED KINASE1-Controlled C/S1-bZIP Signaling Activates Alternative Mitochondrial Metabolic Pathways to Ensure Plant Survival in Extended Darkness.
    Plant Cell, 2018. 30(2): p. 495-509
  44. Para A,Li Y,Coruzzi GM
    μChIP-Seq for Genome-Wide Mapping of In Vivo TF-DNA Interactions in Arabidopsis Root Protoplasts.
    Methods Mol. Biol., 2018. 1761: p. 249-261