PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G36990.1
Common NameATHSF4, AT-HSFB1, C7A10.370, HSF16, HSF4, HSFB1, TBF1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family HSF
Protein Properties Length: 284aa    MW: 31327.9 Da    PI: 6.6828
Description heat shock factor 4
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G36990.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
  HSF_DNA-bind   2 FlkklyeiledeelkeliswsengnsfvvldeeefakkvLpkyFkhsnfaSFvRQLnmYgFkkvkdeekkskskekiweFkhksFkkgkkellekik 98 
                   Fl+k+y++++d+++++++sw+e+g++fvv+++ efak++Lp+yFkh+nf+SF+RQLn+YgF+k+  ++         weF++++F++g ++ll++i+
                   9***************************************************************9999.........******************** PP

                   XXXX CS
  HSF_DNA-bind  99 rkks 102
   AT4G36990.1 103 RRKS 106
                   *986 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA: helix-turn-helix DNA-binding domain
SMARTSM004156.5E-5811104IPR000232Heat shock factor (HSF)-type, DNA-binding
SuperFamilySSF467853.17E-3312104IPR011991Winged helix-turn-helix DNA-binding domain
PRINTSPR000562.8E-201538IPR000232Heat shock factor (HSF)-type, DNA-binding
PfamPF004475.9E-3215104IPR000232Heat shock factor (HSF)-type, DNA-binding
PRINTSPR000562.8E-205365IPR000232Heat shock factor (HSF)-type, DNA-binding
PRINTSPR000562.8E-206678IPR000232Heat shock factor (HSF)-type, DNA-binding
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009408Biological Processresponse to heat
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 284 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5d5u_B2e-24510420129Heat shock factor protein 1
5d5v_B2e-24510420129Heat shock factor protein 1
5d5v_D2e-24510420129Heat shock factor protein 1
5hdk_A2e-24111067112Heat shock factor protein 2
5hdk_B2e-24111067112Heat shock factor protein 2
5hdk_C2e-24111067112Heat shock factor protein 2
5hdk_D2e-24111067112Heat shock factor protein 2
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.53650.0flower| root| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G36990-
Functional Description ? help Back to Top
Source Description
TAIRencodes a protein whose sequence is similar to heat shock factors that regulate the expression of heat shock proteins. Transcript level is increased in response to heat shock. However, overexpression of this gene did not result in the increase of decrease of heat shock proteins.
UniProtTranscriptional regulator that specifically binds DNA sequence 5'-AGAAnnTTCT-3' known as heat shock promoter elements (HSE).
Function -- GeneRIF ? help Back to Top
  1. Data suggest that HsfB1 and HsfB2b may be involved in complex regulatory networks, which are linked to other stress responses and signaling processes.
    [PMID: 19945192]
  2. These data indicate that HsfB1 and HsfB2b suppress the general heat shock response under non-heat-stress conditions and in the attenuating period.
    [PMID: 21908690]
  3. through a unique regulatory mechanism, TBF1 can sense the metabolic changes upon pathogen invasion and trigger the specific transcriptional reprogramming through its target genes expression [TBF1]
    [PMID: 22244999]
  4. HsfB1 is required for the primed expression of defense-related genes.
    [PMID: 22427343]
  5. HsfB1 has a post-transcriptional control mechanism, in which a sequence-conserved upstream open-reading frame (sc-uORF) is involved.
    [PMID: 22571635]
  6. Data indicate that cngc16 mutant pollen have attenuated expression of several heat-stress response genes, including two heat shock transcription factor genes, HsfA2 and HsfB1.
    [PMID: 23370720]
  7. HEAT SHOCK FACTOR B1 (HsfB1) degradation is mediated by its transcriptional repressor function.
    [PMID: 27560701]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By heat stress. {ECO:0000269|PubMed:9645433}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G30250 (A)
Interaction ? help Back to Top
Source Intact With
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G36990
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY1207600.0AY120760.1 Arabidopsis thaliana heat shock transcription factor HSF4 (At4g36990) mRNA, complete cds.
GenBankBT0033690.0BT003369.1 Arabidopsis thaliana heat shock transcription factor HSF4 (At4g36990) mRNA, complete cds.
GenBankY140690.0Y14069.1 Arabidopsis thaliana mRNA for heat shock factor 4.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_195416.10.0heat shock factor 4
SwissprotQ963200.0HSFB1_ARATH; Heat stress transcription factor B-1
TrEMBLC0SVM00.0C0SVM0_ARATH; Uncharacterized protein At4g36990 (Fragment)
STRINGAT4G36990.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP9617233
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Nover L, et al.
    Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
    Cell Stress Chaperones, 2001. 6(3): p. 177-89
  3. Menges M,Hennig L,Gruissem W,Murray JA
    Cell cycle-regulated gene expression in Arabidopsis.
    J. Biol. Chem., 2002. 277(44): p. 41987-2002
  4. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  5. Bharti K, et al.
    Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1.
    Plant Cell, 2004. 16(6): p. 1521-35
  6. Baniwal SK, et al.
    Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors.
    J. Biosci., 2004. 29(4): p. 471-87
  7. Kant P,Kant S,Gordon M,Shaked R,Barak S
    STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses.
    Plant Physiol., 2007. 145(3): p. 814-30
  8. Mueller S, et al.
    General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
    Plant Cell, 2008. 20(3): p. 768-85
  9. Guo J, et al.
    Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    J Genet Genomics, 2008. 35(2): p. 105-18
  10. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  11. Li S,Fu Q,Huang W,Yu D
    Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress.
    Plant Cell Rep., 2009. 28(4): p. 683-93
  12. Ikeda M,Ohme-Takagi M
    A novel group of transcriptional repressors in Arabidopsis.
    Plant Cell Physiol., 2009. 50(5): p. 970-5
  13. Kumar M, et al.
    Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.
    Mol Plant, 2009. 2(1): p. 152-65
  14. Li M, et al.
    Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.
    Eur. J. Cell Biol., 2010 Feb-Mar. 89(2-3): p. 126-32
  15. Nishizawa-Yokoi A, et al.
    HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.
    Plant Cell Physiol., 2011. 52(5): p. 933-45
  16. Ikeda M,Mitsuda N,Ohme-Takagi M
    Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Plant Physiol., 2011. 157(3): p. 1243-54
  17. Causier B,Ashworth M,Guo W,Davies B
    The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Plant Physiol., 2012. 158(1): p. 423-38
  18. Pajerowska-Mukhtar KM, et al.
    The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition.
    Curr. Biol., 2012. 22(2): p. 103-12
  19. Pick T,Jaskiewicz M,Peterh
    Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis.
    Plant Physiol., 2012. 159(1): p. 52-5
  20. Zhu X,Thalor SK,Takahashi Y,Berberich T,Kusano T
    An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis.
    Plant Cell Environ., 2012. 35(11): p. 2014-30
  21. Tunc-Ozdemir M, et al.
    A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development.
    Plant Physiol., 2013. 161(2): p. 1010-20
  22. Weng M, et al.
    Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana.
    Plant Cell Environ., 2014. 37(9): p. 2128-38
  23. Nagashima Y,Iwata Y,Ashida M,Mishiba K,Koizumi N
    Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis.
    Plant Cell Physiol., 2014. 55(10): p. 1772-8
  24. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  25. Nie S,Yue H,Xing D
    A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance.
    Plant Physiol., 2016.
  26. Hossain MA, et al.
    Identification of Novel Components of the Unfolded Protein Response in Arabidopsis.
    Front Plant Sci, 2016. 7: p. 650
  27. Röth S,Mirus O,Bublak D,Scharf KD,Schleiff E
    DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1.
    Plant J., 2017. 89(1): p. 31-44
  28. Xu G, et al.
    uORF-mediated translation allows engineered plant disease resistance without fitness costs.
    Nature, 2017. 545(7655): p. 491-494
  29. Nover L, et al.
    The Hsf world: classification and properties of plant heat stress transcription factors.
    Cell Stress Chaperones, 1996. 1(4): p. 215-23
  30. Prändl R,Hinderhofer K,Eggers-Schumacher G,Schöffl F
    HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants.
    Mol. Gen. Genet., 1998. 258(3): p. 269-78