PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G18960.1
Common NameAG, F13C5.130
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Protein Properties Length: 252aa    MW: 28693.2 Da    PI: 9.9141
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G18960.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 79***********************************************95 PP

        K-box   3 kssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkklee 100
                  +s++ s++e +a+++qqe+akL+++i ++q+++R+l+Ge ++s+s keL++Le +Le+s+++iRskKnell+++i+++qk+e +l+++n+ Lr+k++e
                  45555699***************************************************************************************986 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004321.3E-401776IPR002100Transcription factor, MADS-box
PROSITE profilePS5006633.2211777IPR002100Transcription factor, MADS-box
CDDcd002657.63E-451891No hitNo description
SuperFamilySSF554553.01E-331890IPR002100Transcription factor, MADS-box
PRINTSPR004046.8E-331939IPR002100Transcription factor, MADS-box
PROSITE patternPS0035001973IPR002100Transcription factor, MADS-box
PfamPF003199.6E-272673IPR002100Transcription factor, MADS-box
PRINTSPR004046.8E-333954IPR002100Transcription factor, MADS-box
PRINTSPR004046.8E-335475IPR002100Transcription factor, MADS-box
PfamPF014862.6E-27102187IPR002487Transcription factor, K-box
PROSITE profilePS5129715.276103193IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0048366Biological Processleaf development
GO:0048440Biological Processcarpel development
GO:0048443Biological Processstamen development
GO:0048497Biological Processmaintenance of floral organ identity
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000293anatomyguard cell
PO:0004703anatomycarpel primordium
PO:0004705anatomystamen primordium
PO:0009009anatomyplant embryo
PO:0009052anatomyflower pedicel
PO:0020003anatomyplant ovule
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 252 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3kov_A6e-201885168Myocyte-specific enhancer factor 2A
3kov_B6e-201885168Myocyte-specific enhancer factor 2A
3kov_I6e-201885168Myocyte-specific enhancer factor 2A
3kov_J6e-201885168Myocyte-specific enhancer factor 2A
3mu6_A5e-201885168Myocyte-specific enhancer factor 2A
3mu6_B5e-201885168Myocyte-specific enhancer factor 2A
3mu6_C5e-201885168Myocyte-specific enhancer factor 2A
3mu6_D5e-201885168Myocyte-specific enhancer factor 2A
3p57_A6e-201885168Myocyte-specific enhancer factor 2A
3p57_B6e-201885168Myocyte-specific enhancer factor 2A
3p57_C6e-201885168Myocyte-specific enhancer factor 2A
3p57_D6e-201885168Myocyte-specific enhancer factor 2A
3p57_I6e-201885168Myocyte-specific enhancer factor 2A
3p57_J6e-201885168Myocyte-specific enhancer factor 2A
6c9l_E6e-201885269Myocyte-specific enhancer factor 2B
6c9l_F6e-201885269Myocyte-specific enhancer factor 2B
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.280880.0flower| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G18960-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Detected early in the floral meristem but mostly expressed in stamen and carpel primordia. {ECO:0000269|PubMed:1675158}.
Functional Description ? help Back to Top
Source Description
TAIRFloral homeotic gene encoding a MADS domain transcription factor. Specifies floral meristem and carpel and stamen identity. Binds CArG box sequences. It is the only C function gene. It interacts genetically with the other homeotic genes to specify the floral organs.
UniProtProbable transcription factor involved in the control of organ identity during the early development of flowers. Is required for normal development of stamens and carpels in the wild-type flower. Plays a role in maintaining the determinacy of the floral meristem. Acts as C class cadastral protein by repressing the A class floral homeotic genes like APETALA1. Forms a heterodimer via the K-box domain with either SEPALATTA1/AGL2, SEPALATTA2/AGL4, SEPALLATA3/AGL9 or AGL6 that could be involved in genes regulation during floral meristem development. Controls AHL21/GIK, a multifunctional chromatin modifier in reproductive organ patterning and differentiation (PubMed:19956801). Induces microsporogenesis through the activation of SPL/NZZ (PubMed:15254538). {ECO:0000269|PubMed:15254538, ECO:0000269|PubMed:19956801}.
Function -- GeneRIF ? help Back to Top
  1. floral phenotype of bellringer mutants is caused by derepression of AG, suggesting that BLR functions as a transcription repressor
    [PMID: 15155890]
  2. AG activates biosynthesis of gibberellin, which has been proposed to promote the shift from meristem identity to differentiation
    [PMID: 15634696]
  3. The data provides genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced.
    [PMID: 16679456]
  4. AG and miR172 have distinct functions in flower development and that they largely act independently in the negative regulation of AP2.
    [PMID: 17573799]
  5. The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) interact to control the expression of the flower homeotic gene AGAMOUS.
    [PMID: 17881378]
  6. These results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages.
    [PMID: 17981996]
  7. Transgenic Arabidopsis plants harboring two tissue-specific promoters, fAGIP and rAGIP in forward and reverse orientations, fAGIP::GUS or rAGIP::GUS displayed similar GUS expression specifically in carpel and stamen tissues and their primordial cells.
    [PMID: 18256838]
  8. PERIANTHIA (PAN) plays a role in regulating stem cell fate by directly controlling AG expression and suggest that this activity is spatially restricted to the centermost region of the AG expression domain.
    [PMID: 19395638]
  9. Upon enhanced central AG expression, the C-domain laterally expands necessitating tuning of the expression level of C-function genes in the wild type.
    [PMID: 19554348]
  10. GIANT KILLER (AT2G35270) acts as a molecular node downstream of AGAMOUS, regulating patterning and differentiation of reproductive organs through chromatin organization
    [PMID: 19956801]
  11. A model in which the decision whether stamens or petals develop is based on the balance between AP2 and AG activities, rather than the two being mutually exclusive.
    [PMID: 20876650]
  12. Interaction between the PINOID/ABRUPTUS gene with the AGAMOUS gene: the negative regulator of stem cells in the meristem of Arabidopsis thaliana flower
    [PMID: 21542343]
  13. AGAMOUS directly represses WUS expression by binding to the WUS locus and recruiting, directly or indirectly, PcG that methylates histone H3 Lys-27 at WUS.
    [PMID: 22028461]
  14. in the delicately balanced regulatory network, NSN1 acts to repress AG and plays an additive role with AP2 in floral organ specification.
    [PMID: 22357616]
  15. Data indicate that C function regulator AGAMOUS and the B function regulators APETALA3 and PISTILLATA control many developmental processes in conjunction, as well as independent activities.
    [PMID: 23821642]
  16. In the floral meristem, the binding of AG to WUS is reduced in top1a-2, which results in reduced H3K27me3 levels at WUS and prolonged WUS expression, and consequently loss of floral determinacy.
    [PMID: 25070639]
  17. ARF3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy.
    [PMID: 25187180]
  18. The ULT1 and LFY pathways act separately in regulating identity and determinacy at the floral meristem. In particular, they independently induce AG expression in the centre of the flower to terminate meristem activity.
    [PMID: 25288633]
  19. FLK and PEP physically interact with proteins involved in AG pre-mRNA processing to secure correct AG function in the floral meristem and flower
    [PMID: 25658099]
  20. AP2 does not repress the transcription of AG in the inner two whorls, but instead counteracts AG activity.
    [PMID: 27604611]
  21. The expression signals of AG were detected in the initiating carpel primordia and regenerating carpels, and co-localized with those of two Type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR1 and ARR10.
    [PMID: 29186581]
  22. findings suggest that AGAMOUS functions to maintain the irreversible state of reproductive development through the negative regulation of floral meristem identity genes and genes involved in organ initiation
    [PMID: 29218596]
  23. The feed-forward YUC4 activation by AG and CRC directs a precise change in chromatin state for the shift from floral stem cell maintenance to gynoecium formation.
    [PMID: 30538233]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Negatively regulated by the A class floral homeotic protein APETALA2 and by other repressors like LEUNIG, SEUSS, SAP or CURLY LEAF. Positively regulated by both LEAFY and APETALA1. Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. Up-regulated by HUA2. {ECO:0000269|PubMed:10198637, ECO:0000269|PubMed:11058164, ECO:0000269|PubMed:1675158, ECO:0000269|PubMed:17794879, ECO:0000269|PubMed:18281509, ECO:0000269|PubMed:19783648, ECO:0000269|PubMed:9783581}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G24260 (A), AT1G68640 (A), AT1G69120 (R), AT1G69180 (A), AT1G70510 (A), AT2G01500 (R), AT2G17950 (A), AT2G22540 (R), AT2G45190 (R), AT4G09960 (A), AT4G18960 (A), AT4G24540 (R), AT4G27330 (A), AT4G36920 (R), AT4G37750 (R), AT5G02030 (R), AT5G06070 (R), AT5G10510 (A), AT5G35770 (R), AT5G41410 (R), AT5G61850 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G15550(A), AT1G24260(A), AT1G68640(R), AT1G69120(R), AT1G69180(A), AT2G17950(R), AT2G44810(A), AT3G23130(A), AT3G54340(A), AT4G18960(A), AT4G27330(A), AT4G28520(A), AT4G32980(A), AT4G36920(R), AT5G14010(A)
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT5G61850LFY interacts with AG enhancer.
BINDAT4G27330Agamous (AG) interacts with a CArG-box core in the Sporocyteless (SPL) 3' UTR.
BINDAT1G24260AG interacts with AGL9.
BINDAT5G15800AG interacts with AGL2.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT4G18960, AT4G24540, AT4G37940, AT5G13790, AT5G15800, AT5G20240, AT5G27130, AT5G41410, AT5G60910, AT1G24260, AT1G02065, AT1G46408, AT1G48150, AT1G69120
IntActSearch P17839
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Mutations result in the replacement of the six stamens by six petals and of the carpels by a new mutant flower. {ECO:0000269|PubMed:1973265}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G18960
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankX535790.0X53579.1 A.thaliana agamous (AG) gene.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_567569.30.0K-box region and MADS-box transcription factor family protein, partial
SwissprotP178390.0AG_ARATH; Floral homeotic protein AGAMOUS
TrEMBLD7M9D00.0D7M9D0_ARALL; Uncharacterized protein
STRINGAT4G18960.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1617761
Publications ? help Back to Top
  1. Yu D, et al.
    Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae)
    Plant J., 1999. 17(1): p. 51-62
  2. Chen X,Meyerowitz EM
    HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway.
    Mol. Cell, 1999. 3(3): p. 349-60
  3. Byzova MV, et al.
    Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development.
    Genes Dev., 1999. 13(8): p. 1002-14
  4. Alvarez J,Smyth DR
    CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS.
    Development, 1999. 126(11): p. 2377-86
  5. Chen Q, et al.
    The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation.
    Development, 1999. 126(12): p. 2715-26
  6. Bowman JL,Baum SF,Eshed Y,Putterill J,Alvarez J
    Molecular genetics of gynoecium development in Arabidopsis.
    Curr. Top. Dev. Biol., 1999. 45: p. 155-205
  7. Western TL,Haughn GW
    BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana.
    Plant J., 1999. 18(3): p. 329-36
  8. Brunel D,Froger N,Pelletier G
    Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function.
    Genome, 1999. 42(3): p. 387-402
  9. Davies B, et al.
    PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    EMBO J., 1999. 18(14): p. 4023-34
  10. Busch MA,Bomblies K,Weigel D
    Activation of a floral homeotic gene in Arabidopsis.
    Science, 1999. 285(5427): p. 585-7
  11. Cho S, et al.
    Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.
    Plant Mol. Biol., 1999. 40(3): p. 419-29
  12. Riechmann JL,Ito T,Meyerowitz EM
    Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana.
    Mol. Cell. Biol., 1999. 19(12): p. 8505-12
  13. Bomblies K,Dagenais N,Weigel D
    Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2.
    Dev. Biol., 1999. 216(1): p. 260-4
  14. Jenik PD,Irish VF
    Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development.
    Development, 2000. 127(6): p. 1267-76
  15. Jacobsen SE,Sakai H,Finnegan EJ,Cao X,Meyerowitz EM
    Ectopic hypermethylation of flower-specific genes in Arabidopsis.
    Curr. Biol., 2000. 10(4): p. 179-86
  16. Chuang CF,Meyerowitz EM
    Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(9): p. 4985-90
  17. Onouchi H,Ige
    Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.
    Plant Cell, 2000. 12(6): p. 885-900
  18. Kyozuka J,Kobayashi T,Morita M,Shimamoto K
    Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.
    Plant Cell Physiol., 2000. 41(6): p. 710-8
  19. Krizek BA,Prost V,Macias A
    AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
    Plant Cell, 2000. 12(8): p. 1357-66
  20. Sakai H,Krizek BA,Jacobsen SE,Meyerowitz EM
    Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
    Plant Cell, 2000. 12(9): p. 1607-18
  21. Hase Y,Tanaka A,Baba T,Watanabe H
    FRL1 is required for petal and sepal development in Arabidopsis.
    Plant J., 2000. 24(1): p. 21-32
  22. Deyholos MK,Sieburth LE
    Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron.
    Plant Cell, 2000. 12(10): p. 1799-810
  23. Liu Z,Franks RG,Klink VP
    Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA.
    Plant Cell, 2000. 12(10): p. 1879-92
  24. Conner J,Liu Z
    LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(23): p. 12902-7
  25. Serrano-Cartagena J, et al.
    Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis.
    Genetics, 2000. 156(3): p. 1363-77
  26. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  27. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
  28. Heisler MG,Atkinson A,Bylstra YH,Walsh R,Smyth DR
    SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein.
    Development, 2001. 128(7): p. 1089-98
  29. G
    early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy.
    Plant Cell, 2001. 13(5): p. 1011-24
  30. Prigge MJ,Wagner DR
    The arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development.
    Plant Cell, 2001. 13(6): p. 1263-79
  31. Lohmann JU, et al.
    A molecular link between stem cell regulation and floral patterning in Arabidopsis.
    Cell, 2001. 105(6): p. 793-803
  32. Lenhard M,Bohnert A,J
    Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS.
    Cell, 2001. 105(6): p. 805-14
  33. Pautot V, et al.
    KNAT2: evidence for a link between knotted-like genes and carpel development.
    Plant Cell, 2001. 13(8): p. 1719-34
  34. Doerner P
    Plant meristems: a m
    Curr. Biol., 2001. 11(19): p. R785-7
  35. Li J,Jia D,Chen X
    HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein.
    Plant Cell, 2001. 13(10): p. 2269-81
  36. Gamboa A,Paéz-Valencia J,Acevedo GF,Vázquez-Moreno L,Alvarez-Buylla RE
    Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex.
    Biochem. Biophys. Res. Commun., 2001. 288(4): p. 1018-26
  37. Roeder AH,Yanofsky MF
    Unraveling the mystery of double flowers.
    Dev. Cell, 2001. 1(1): p. 4-6
  38. Franks RG,Wang C,Levin JZ,Liu Z
    SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG.
    Development, 2002. 129(1): p. 253-63
  39. Bereterbide A,Hernould M,Farbos I,Glimelius K,Mouras A
    Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene.
    Plant J., 2002. 29(5): p. 607-15
  40. Chen X,Liu J,Cheng Y,Jia D
    HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower.
    Development, 2002. 129(5): p. 1085-94
  41. Western TL,Cheng Y,Liu J,Chen X
    HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis.
    Development, 2002. 129(7): p. 1569-81
  42. Parcy F,Bomblies K,Weigel D
    Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis.
    Development, 2002. 129(10): p. 2519-27
  43. Nakajima K,Benfey PN
    Signaling in and out: control of cell division and differentiation in the shoot and root.
    Plant Cell, 2002. 14 Suppl: p. S265-76
  44. Hedtke B,Legen J,Weihe A,Herrmann RG,B
    Six active phage-type RNA polymerase genes in Nicotiana tabacum.
    Plant J., 2002. 30(6): p. 625-37
  45. Jack T
    New members of the floral organ identity AGAMOUS pathway.
    Trends Plant Sci., 2002. 7(7): p. 286-7
  46. Li QZ,Li XG,Bai SN,Lu WL,Zhang XS
    Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L.
    Planta, 2002. 215(4): p. 533-40
  47. Huala E,Sussex IM
    LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development.
    Plant Cell, 1992. 4(8): p. 901-913
  48. Schultz EA,Pickett FB,Haughn GW
    The FLO10 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers.
    Plant Cell, 1991. 3(11): p. 1221-1237
  49. Shannon S,Meeks-Wagner DR
    A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development.
    Plant Cell, 1991. 3(9): p. 877-892
  50. Kapoor M, et al.
    Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function.
    Plant J., 2002. 32(1): p. 115-27
  51. Tzeng TY,Chen HY,Yang CH
    Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Plant Physiol., 2002. 130(4): p. 1827-36
  52. Urban M,Daniels S,Mott E,Hammond-Kosack K
    Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum.
    Plant J., 2002. 32(6): p. 961-73
  53. Cheng Y,Kato N,Wang W,Li J,Chen X
    Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana.
    Dev. Cell, 2003. 4(1): p. 53-66
  54. Jager M,Hassanin A,Manuel M,Le Guyader H,Deutsch J
    MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family.
    Mol. Biol. Evol., 2003. 20(5): p. 842-54
  55. Alvarez-Venegas R, et al.
    ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
    Curr. Biol., 2003. 13(8): p. 627-37
  56. Hennig L,Taranto P,Walser M,Sch
    Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development.
    Development, 2003. 130(12): p. 2555-65
  57. Bertrand C,Bergounioux C,Domenichini S,Delarue M,Zhou DX
    Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway.
    J. Biol. Chem., 2003. 278(30): p. 28246-51
  58. Hong RL,Hamaguchi L,Busch MA,Weigel D
    Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.
    Plant Cell, 2003. 15(6): p. 1296-309
  59. Durfee T, et al.
    The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(14): p. 8571-6
  60. Kotake T,Takada S,Nakahigashi K,Ohto M,Goto K
    Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes.
    Plant Cell Physiol., 2003. 44(6): p. 555-64
  61. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
  62. Pinyopich A, et al.
    Assessing the redundancy of MADS-box genes during carpel and ovule development.
    Nature, 2003. 424(6944): p. 85-8
  63. Li J,Chen X
    PAUSED, a putative exportin-t, acts pleiotropically in Arabidopsis development but is dispensable for viability.
    Plant Physiol., 2003. 132(4): p. 1913-24
  64. Mayama T,Ohtsubo E,Tsuchimoto S
    Isolation and expression analysis of petunia CURLY LEAF-like genes.
    Plant Cell Physiol., 2003. 44(8): p. 811-9
  65. Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyerowitz EM
    LEAFY controls floral meristem identity in Arabidopsis.
    Cell, 1992. 69(5): p. 843-59
  66. Bowman JL, et al.
    SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
    Development, 1992. 114(3): p. 599-615
  67. Mizukami Y,Ma H
    Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity.
    Cell, 1992. 71(1): p. 119-31
  68. Favaro R, et al.
    MADS-box protein complexes control carpel and ovule development in Arabidopsis.
    Plant Cell, 2003. 15(11): p. 2603-11
  69. Becker A,Theissen G
    The major clades of MADS-box genes and their role in the development and evolution of flowering plants.
    Mol. Phylogenet. Evol., 2003. 29(3): p. 464-89
  70. J
    Growing up green: cellular basis of plant development.
    Mech. Dev., 2003. 120(11): p. 1395-406
  71. Chujo A,Zhang Z,Kishino H,Shimamoto K,Kyozuka J
    Partial conservation of LFY function between rice and Arabidopsis.
    Plant Cell Physiol., 2003. 44(12): p. 1311-9
  72. Zhang P,Tan HT,Pwee KH,Kumar PP
    Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms.
    Plant J., 2004. 37(4): p. 566-77
  73. Katz A,Oliva M,Mosquna A,Hakim O,Ohad N
    FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development.
    Plant J., 2004. 37(5): p. 707-19
  74. Kramer EM,Jaramillo MA,Di Stilio VS
    Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms.
    Genetics, 2004. 166(2): p. 1011-23
  75. Jack T
    Molecular and genetic mechanisms of floral control.
    Plant Cell, 2004. 16 Suppl: p. S1-17
  76. Ni W, et al.
    Regulation of flower development in Arabidopsis by SCF complexes.
    Plant Physiol., 2004. 134(4): p. 1574-85
  77. Breuil-Broyer S, et al.
    High-resolution boundary analysis during Arabidopsis thaliana flower development.
    Plant J., 2004. 38(1): p. 182-92
  78. Lemmetyinen J, et al.
    Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch.
    Physiol Plant, 2004. 121(1): p. 149-162
  79. Wellmer F,Riechmann JL,Alves-Ferreira M,Meyerowitz EM
    Genome-wide analysis of spatial gene expression in Arabidopsis flowers.
    Plant Cell, 2004. 16(5): p. 1314-26
  80. Yu H, et al.
    Floral homeotic genes are targets of gibberellin signaling in flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(20): p. 7827-32
  81. Benedito VA, et al.
    Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    J. Exp. Bot., 2004. 55(401): p. 1391-9
  82. Bao X,Franks RG,Levin JZ,Liu Z
    Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems.
    Plant Cell, 2004. 16(6): p. 1478-89
  83. Ito T, et al.
    The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS.
    Nature, 2004. 430(6997): p. 356-60
  84. Sridhar VV,Surendrarao A,Gonzalez D,Conlan RS,Liu Z
    Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(31): p. 11494-9
  85. Carles CC,Lertpiriyapong K,Reville K,Fletcher JC
    The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
    Genetics, 2004. 167(4): p. 1893-903
  86. Pfluger J,Zambryski P
    The role of SEUSS in auxin response and floral organ patterning.
    Development, 2004. 131(19): p. 4697-707
  87. Dinneny JR,Yanofsky MF
    Floral development: an ABC gene chips in downstream.
    Curr. Biol., 2004. 14(19): p. R840-1
  88. Chub VV,Penin AA
    [Structure of flower in Arabidopsis thaliana: spatial pattern formation].
    Ontogenez, 2004 Jul-Aug. 35(4): p. 280-4
  89. Lee JY, et al.
    Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis.
    Plant Cell, 2005. 17(1): p. 25-36
  90. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
  91. Gómez-Mena C,de Folter S,Costa MM,Angenent GC,Sablowski R
    Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.
    Development, 2005. 132(3): p. 429-38
  92. Park SO,Zheng Z,Oppenheimer DG,Hauser BA
    The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development.
    Development, 2005. 132(4): p. 841-9
  93. Smyth DR
    Morphogenesis of flowers--our evolving view.
    Plant Cell, 2005. 17(2): p. 330-41
  94. Di Stilio VS,Kramer EM,Baum DA
    Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy.
    Plant J., 2005. 41(5): p. 755-66
  95. Kooiker M, et al.
    BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK.
    Plant Cell, 2005. 17(3): p. 722-9
  96. Xing S,Rosso MG,Zachgo S
    ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana.
    Development, 2005. 132(7): p. 1555-65
  97. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
  98. Maizel A, et al.
    The floral regulator LEAFY evolves by substitutions in the DNA binding domain.
    Science, 2005. 308(5719): p. 260-3
  99. Kidner CA,Martienssen RA
    The role of ARGONAUTE1 (AGO1) in meristem formation and identity.
    Dev. Biol., 2005. 280(2): p. 504-17
  100. Nakayama N, et al.
    Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens.
    Plant Cell, 2005. 17(9): p. 2486-506
  101. Quesada V,Dean C,Simpson GG
    Regulated RNA processing in the control of Arabidopsis flowering.
    Int. J. Dev. Biol., 2005. 49(5-6): p. 773-80
  102. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
  103. Causier B, et al.
    Evolution in action: following function in duplicated floral homeotic genes.
    Curr. Biol., 2005. 15(16): p. 1508-12
  104. Kapoor M, et al.
    Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia.
    Plant J., 2005. 43(5): p. 649-61
  105. Kim S, et al.
    Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Plant J., 2005. 43(5): p. 724-44
  106. Nakahigashi K,Jasencakova Z,Schubert I,Goto K
    The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.
    Plant Cell Physiol., 2005. 46(11): p. 1747-56
  107. Skipper M,Johansen LB,Pedersen KB,Frederiksen S,Johansen BB
    Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.).
    Gene, 2006. 366(2): p. 266-74
  108. Albrecht C,Russinova E,Hecht V,Baaijens E,de Vries S
    The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis.
    Plant Cell, 2005. 17(12): p. 3337-49
  109. Yamaguchi T, et al.
    Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa.
    Plant Cell, 2006. 18(1): p. 15-28
  110. Ordidge M,Chiurugwi T,Tooke F,Battey NH
    LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina.
    Plant J., 2005. 44(6): p. 985-1000
  111. Würschum T,Gross-Hardt R,Laux T
    APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.
    Plant Cell, 2006. 18(2): p. 295-307
  112. Krizek BA,Lewis MW,Fletcher JC
    RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.
    Plant J., 2006. 45(3): p. 369-83
  113. Xu Y,Teo LL,Zhou J,Kumar PP,Yu H
    Floral organ identity genes in the orchid Dendrobium crumenatum.
    Plant J., 2006. 46(1): p. 54-68
  114. Franks RG,Liu Z,Fischer RL
    SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals.
    Planta, 2006. 224(4): p. 801-11
  115. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
  116. Gregis V,Sessa A,Colombo L,Kater MM
    AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1373-82
  117. Nole-Wilson S,Krizek BA
    AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes.
    Plant Physiol., 2006. 141(3): p. 977-87
  118. Ma H,Yanofsky MF,Meyerowitz EM
    AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes.
    Genes Dev., 1991. 5(3): p. 484-95
  119. Guyomarc'h S, et al.
    MGOUN3: evidence for chromatin-mediated regulation of FLC expression.
    J. Exp. Bot., 2006. 57(9): p. 2111-9
  120. Drews GN,Bowman JL,Meyerowitz EM
    Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.
    Cell, 1991. 65(6): p. 991-1002
  121. Bowman JL,Smyth DR,Meyerowitz EM
    Genetic interactions among floral homeotic genes of Arabidopsis.
    Development, 1991. 112(1): p. 1-20
  122. Sridhar VV,Surendrarao A,Liu Z
    APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Development, 2006. 133(16): p. 3159-66
  123. Makarevich G, et al.
    Different Polycomb group complexes regulate common target genes in Arabidopsis.
    EMBO Rep., 2006. 7(9): p. 947-52
  124. Pnueli L, et al.
    The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Plant J., 1991. 1(2): p. 255-66
  125. Szécsi J, et al.
    BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size.
    EMBO J., 2006. 25(16): p. 3912-20
  126. de Folter S, et al.
    A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.
    Plant J., 2006. 47(6): p. 934-46
  127. Schubert D, et al.
    Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27.
    EMBO J., 2006. 25(19): p. 4638-49
  128. Germann S,Juul-Jensen T,Letarnec B,Gaudin V
    DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci.
    Plant J., 2006. 48(1): p. 153-63
  129. Washio K,Morikawa M
    Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin.
    Biochim. Biophys. Acta, 2006. 1759(10): p. 478-90
  130. Gray-Mitsumune M, et al.
    Loss of ovule identity induced by overexpression of the fertilization-related kinase 2 (ScFRK2), a MAPKKK from Solanum chacoense.
    J. Exp. Bot., 2006. 57(15): p. 4171-87
  131. Trevaskis B, et al.
    Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley.
    Plant Physiol., 2007. 143(1): p. 225-35
  132. Mitsuda N, et al.
    Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.
    Plant Biotechnol. J., 2006. 4(3): p. 325-32
  133. Ogawa T,Uchimiya H,Kawai-Yamada M
    Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2.
    Ann. Bot., 2007. 99(2): p. 239-44
  134. L
    Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions.
    Evol. Dev., 2007 Jan-Feb. 9(1): p. 92-104
  135. Bowman JL,Drews GN,Meyerowitz EM
    Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.
    Plant Cell, 1991. 3(8): p. 749-58
  136. Sablowski R
    Flowering and determinacy in Arabidopsis.
    J. Exp. Bot., 2007. 58(5): p. 899-907
  137. Yadav SR,Prasad K,Vijayraghavan U
    Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Genetics, 2007. 176(1): p. 283-94
  138. Scofield S,Dewitte W,Murray JA
    The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis.
    Plant J., 2007. 50(5): p. 767-81
  139. Turck F, et al.
    Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27.
    PLoS Genet., 2007. 3(6): p. e86
  140. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
  141. Wijeratne AJ, et al.
    Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks.
    Plant J., 2007. 52(1): p. 14-29
  142. Brambilla V, et al.
    Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Plant Cell, 2007. 19(8): p. 2544-56
  143. Wang Q, et al.
    HUA2 caused natural variation in shoot morphology of A. thaliana.
    Curr. Biol., 2007. 17(17): p. 1513-9
  144. Weigel D,Meyerowitz EM
    Activation of floral homeotic genes in Arabidopsis.
    Science, 1993. 261(5129): p. 1723-6
  145. de Folter S,Urbanus SL,van Zuijlen LG,Kaufmann K,Angenent GC
    Tagging of MADS domain proteins for chromatin immunoprecipitation.
    BMC Plant Biol., 2007. 7: p. 47
  146. Barrero JM,Gonz
    INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana.
    Plant Cell, 2007. 19(9): p. 2822-38
  147. Fan J,Li W,Dong X,Guo W,Shu H
    Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis.
    Sci. China, C, Life Sci., 2007. 50(5): p. 676-89
  148. Saleh A,Al-Abdallat A,Ndamukong I,Alvarez-Venegas R,Avramova Z
    The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus.
    Nucleic Acids Res., 2007. 35(18): p. 6290-6
  149. Proveniers M,Rutjens B,Brand M,Smeekens S
    The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC.
    Plant J., 2007. 52(5): p. 899-913
  150. Wang HZ, et al.
    Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco.
    Plant Cell Rep., 2008. 27(2): p. 251-9
  151. Ito T,Ng KH,Lim TS,Yu H,Meyerowitz EM
    The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis.
    Plant Cell, 2007. 19(11): p. 3516-29
  152. Chatelet P, et al.
    Characterization of Vitis vinifera L. somatic variants exhibiting abnormal flower development patterns.
    J. Exp. Bot., 2007. 58(15-16): p. 4107-18
  153. Tapia-López R, et al.
    An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis.
    Plant Physiol., 2008. 146(3): p. 1182-92
  154. Busov VB,Brunner AM,Strauss SH
    Genes for control of plant stature and form.
    New Phytol., 2008. 177(3): p. 589-607
  155. Liu Z,Liu Z
    The second intron of AGAMOUS drives carpel- and stamen-specific expression sufficient to induce complete sterility in Arabidopsis.
    Plant Cell Rep., 2008. 27(5): p. 855-63
  156. Calonje M,Sanchez R,Chen L,Sung ZR
    EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis.
    Plant Cell, 2008. 20(2): p. 277-91
  157. Sitaraman J,Bui M,Liu Z
    LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development.
    Plant Physiol., 2008. 147(2): p. 672-81
  158. Prunet N, et al.
    REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana.
    Plant Cell, 2008. 20(4): p. 901-19
  159. Manzano C,Abraham Z,L
    Identification of ubiquitinated proteins in Arabidopsis.
    Plant Mol. Biol., 2008. 68(1-2): p. 145-58
  160. Li LC, et al.
    SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis.
    New Phytol., 2008. 179(3): p. 751-64
  161. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
  162. Gómez-Mena C,Sablowski R
    ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth.
    Plant Cell, 2008. 20(8): p. 2059-72
  163. Causier B,Bradley D,Cook H,Davies B
    Conserved intragenic elements were critical for the evolution of the floral C-function.
    Plant J., 2009. 58(1): p. 41-52
  164. Yu L,Patibanda V,Smith HM
    A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.
    Planta, 2009. 229(3): p. 693-707
  165. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
  166. Rutjens B, et al.
    Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins.
    Plant J., 2009. 58(4): p. 641-54
  167. Hily JM,Singer SD,Yang Y,Liu Z
    A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana.
    Plant Cell Rep., 2009. 28(7): p. 1095-104
  168. Kaufmann K, et al.
    Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
    PLoS Biol., 2009. 7(4): p. e1000090
  169. Das P, et al.
    Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA.
    Development, 2009. 136(10): p. 1605-11
  170. Maier AT, et al.
    Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression.
    Development, 2009. 136(10): p. 1613-20
  171. Tani E, et al.
    Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.
    Plant Physiol. Biochem., 2009. 47(8): p. 690-700
  172. Krizek B
    AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Plant Physiol., 2009. 150(4): p. 1916-29
  173. Cartolano M,Efremova N,Kuckenberg M,Raman S,Schwarz-Sommer Z
    Enhanced AGAMOUS expression in the centre of the Arabidopsis flower causes ectopic expression over its outer expression boundaries.
    Planta, 2009. 230(4): p. 857-62
  174. Ming F,Ma H
    A terminator of floral stem cells.
    Genes Dev., 2009. 23(15): p. 1705-8
  175. Sun B,Xu Y,Ng KH,Ito T
    A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem.
    Genes Dev., 2009. 23(15): p. 1791-804
  176. Brambilla V,Kater M,Colombo L
    Ovule integument identity determination in Arabidopsis.
    Plant Signal Behav, 2008. 3(4): p. 246-7
  177. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
  178. Yanofsky MF, et al.
    The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.
    Nature, 1990. 346(6279): p. 35-9
  179. Doyle MR,Amasino RM
    A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1688-97
  180. Kim SY,Zhu T,Sung ZR
    Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.
    Plant Physiol., 2010. 152(2): p. 516-28
  181. Irish VF,Sussex IM
    Function of the apetala-1 gene during Arabidopsis floral development.
    Plant Cell, 1990. 2(8): p. 741-53
  182. Ikeda M,Mitsuda N,Ohme-Takagi M
    Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning.
    Plant Cell, 2009. 21(11): p. 3493-505
  183. del Olmo I, et al.
    EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing.
    Plant J., 2010. 61(4): p. 623-36
  184. Carles CC,Fletcher JC
    The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants.
    Genes Dev., 2009. 23(23): p. 2723-8
  185. Ng KH,Yu H,Ito T
    AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation.
    PLoS Biol., 2009. 7(11): p. e1000251
  186. Peng J
    Gibberellin and jasmonate crosstalk during stamen development.
    J Integr Plant Biol, 2009. 51(12): p. 1064-70
  187. Liu X, et al.
    Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense.
    J. Biosci., 2009. 34(6): p. 941-51
  188. Ng KH,Ito T
    Shedding light on the role of AT-hook/PPC domain protein in Arabidopsis thaliana.
    Plant Signal Behav, 2010. 5(2): p. 200-1
  189. Yang Y,Singer SD,Liu Z
    Two similar but distinct second intron fragments from tobacco AGAMOUS homologs confer identical floral organ-specific expression sufficient for generating complete sterility in plants.
    Planta, 2010. 231(5): p. 1159-69
  190. Urbanus SL, et al.
    Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Plant J., 2010. 63(1): p. 60-72
  191. Tanaka S,Ishii C,Hatakeyama S,Inoue H
    High efficient gene targeting on the AGAMOUS gene in an ArabidopsisAtLIG4 mutant.
    Biochem. Biophys. Res. Commun., 2010. 396(2): p. 289-93
  192. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
  193. Causier B,Castillo R,Xue Y,Schwarz-Sommer Z,Davies B
    Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny.
    Mol. Biol. Evol., 2010. 27(11): p. 2651-64
  194. Matias-Hernandez L, et al.
    VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1702-15
  195. Singer SD,Cox KD,Liu Z
    Both the constitutive cauliflower mosaic virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana.
    Plant Mol. Biol., 2010. 74(3): p. 293-305
  196. Urbanus SL,Dinh QD,Angenent GC,Immink RG
    Investigation of MADS domain transcription factor dynamics in the floral meristem.
    Plant Signal Behav, 2010. 5(10): p. 1260-2
  197. Wollmann H,Mica E,Todesco M,Long JA,Weigel D
    On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development.
    Development, 2010. 137(21): p. 3633-42
  198. Yellina AL, et al.
    Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica).
    Evodevo, 2010. 1: p. 13
  199. Yang Y,Karlson DT
    Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis.
    J. Exp. Bot., 2011. 62(6): p. 2079-91
  200. Groth E,Tandre K,Engstr
    AGAMOUS subfamily MADS-box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae.
    Evol. Dev., 2011 Mar-Apr. 13(2): p. 159-70
  201. Moyroud E, et al.
    Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor.
    Plant Cell, 2011. 23(4): p. 1293-306
  202. Jeong CW, et al.
    An E3 ligase complex regulates SET-domain polycomb group protein activity in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(19): p. 8036-41
  203. Kavaĭ-ool UN,Karpenko OIu,Ezhova TA
    [Interaction between the PINOID/ABRUPTUS gene with the AGAMOUS gene: the negative regulator of stem cells in the meristem of Arabidopsis thaliana flower].
    Ontogenez, 2011 Mar-Apr. 42(2): p. 146-50
  204. Kaufmann K,Nagasaki M,J
    Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana.
    Stud Health Technol Inform, 2011. 162: p. 279-97
  205. Dreni L, et al.
    Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy.
    Plant Cell, 2011. 23(8): p. 2850-63
  206. Romanel E, et al.
    Reproductive Meristem22 is a unique marker for the early stages of stamen development.
    Int. J. Dev. Biol., 2011. 55(6): p. 657-64
  207. Liu X, et al.
    AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins.
    Plant Cell, 2011. 23(10): p. 3654-70
  208. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
  209. Varkonyi-Gasic E,Lough RH,Moss SM,Wu R,Hellens RP
    Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172.
    Plant Mol. Biol., 2012. 78(4-5): p. 417-29
  210. Wu MF, et al.
    SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(9): p. 3576-81
  211. Liu DD, et al.
    Functional characterization of an apple apomixis-related MhFIE gene in reproduction development.
    Plant Sci., 2012. 185-186: p. 105-11
  212. Thouet J,Quinet M,Lutts S,Kinet JM,P
    Repression of floral meristem fate is crucial in shaping tomato inflorescence.
    PLoS ONE, 2012. 7(2): p. e31096
  213. Wang X,Gingrich DK,Deng Y,Hong Z
    A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis.
    Mol. Biol. Cell, 2012. 23(8): p. 1446-56
  214. Lopez-Vernaza M, et al.
    Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF.
    PLoS ONE, 2012. 7(2): p. e30715
  215. Kaufmann K,Nagasaki M,J
    Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana.
    In Silico Biol. (Gedrukt), 2010. 10(1): p. 125-43
  216. Dinh TT, et al.
    The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element.
    Development, 2012. 139(11): p. 1978-86
  217. Seo PJ, et al.
    Targeted inactivation of transcription factors by overexpression of their truncated forms in plants.
    Plant J., 2012. 72(1): p. 162-72
  218. Galimba KD, et al.
    Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(34): p. E2267-75
  219. Krogan NT,Hogan K,Long JA
    APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Development, 2012. 139(22): p. 4180-90
  220. Liu Z,Zhang D,Liu D,Li F,Lu H
    Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae).
    Plant Cell Rep., 2013. 32(2): p. 227-37
  221. Kradolfer D,Hennig L,K
    Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development.
    PLoS Genet., 2013. 9(1): p. e1003163
  222. Zheng Z,Guan H,Leal F,Grey PH,Oppenheimer DG
    Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis.
    PLoS ONE, 2013. 8(1): p. e53924
  223. Lee S, et al.
    Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana.
    Plant Sci., 2013. 208: p. 20-7

  224. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS.
    Plant Cell, 2013. 25(7): p. 2482-503
  225. Hsu WH, et al.
    AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis.
    Plant J., 2014. 77(1): p. 1-15
  226. Liu X, et al.
    DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis.
    Plant Cell, 2014. 26(7): p. 2803-17
  227. Liu X, et al.
    AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy.
    Plant J., 2014. 80(4): p. 629-41
  228. Engelhorn J,Moreau F,Fletcher JC,Carles CC
    ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem.
    Ann. Bot., 2014. 114(7): p. 1497-505
  229. Bowman JL,Smyth DR,Meyerowitz EM
    Genes directing flower development in Arabidopsis.
    Plant Cell, 1989. 1(1): p. 37-52
  230. Rodr
    K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in arabidopsis.
    PLoS Genet., 2015. 11(2): p. e1004983
  231. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  232. Huang Z, et al.
    APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana.
    New Phytol., 2017. 215(3): p. 1197-1209
  233. Rong XF, et al.
    Type-B ARRs Control Carpel Regeneration Through Mediating AGAMOUS Expression in Arabidopsis.
    Plant Cell Physiol., 2018. 59(4): p. 756-764
  234. Uemura A, et al.
    Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis.
    Plant Reprod, 2018. 31(1): p. 89-105
  235. Yamaguchi N, et al.
    Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy.
    Nat Commun, 2018. 9(1): p. 5290
  236. Gustafson-Brown C,Savidge B,Yanofsky MF
    Regulation of the arabidopsis floral homeotic gene APETALA1.
    Cell, 1994. 76(1): p. 131-43
  237. Kempin SA,Mandel MA,Yanofsky MF
    Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1.
    Plant Physiol., 1993. 103(4): p. 1041-6
  238. Sieburth LE,Running MP,Meyerowitz EM
    Genetic separation of third and fourth whorl functions of AGAMOUS.
    Plant Cell, 1995. 7(8): p. 1249-58
  239. Kang HG, et al.
    Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco.
    Plant Mol. Biol., 1995. 29(1): p. 1-10
  240. Purugganan MD,Rounsley SD,Schmidt RJ,Yanofsky MF
    Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics, 1995. 140(1): p. 345-56
  241. Mizukami Y,Ma H
    Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA.
    Plant Mol. Biol., 1995. 28(5): p. 767-84
  242. Savidge B,Rounsley SD,Yanofsky MF
    Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes.
    Plant Cell, 1995. 7(6): p. 721-33
  243. Liu Z,Meyerowitz EM
    LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.
    Development, 1995. 121(4): p. 975-91
  244. Yang CH,Chen LJ,Sung ZR
    Genetic regulation of shoot development in Arabidopsis: role of the EMF genes.
    Dev. Biol., 1995. 169(2): p. 421-35
  245. Huang H,Mizukami Y,Hu Y,Ma H
    Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS.
    Nucleic Acids Res., 1993. 21(20): p. 4769-76
  246. Angenent GC,Franken J,Busscher M,Weiss D,van Tunen AJ
    Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem.
    Plant J., 1994. 5(1): p. 33-44
  247. Pnueli L,Hareven D,Rounsley SD,Yanofsky MF,Lifschitz E
    Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants.
    Plant Cell, 1994. 6(2): p. 163-73
  248. Ray A, et al.
    Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG).
    Proc. Natl. Acad. Sci. U.S.A., 1994. 91(13): p. 5761-5
  249. Weigel D,Meyerowitz EM
    The ABCs of floral homeotic genes.
    Cell, 1994. 78(2): p. 203-9
  250. Jofuku KD,den Boer BG,Van Montagu M,Okamuro JK
    Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.
    Plant Cell, 1994. 6(9): p. 1211-25
  251. Flanagan CA,Ma H
    Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant arabidopsis flowers.
    Plant Mol. Biol., 1994. 26(2): p. 581-95
  252. Bradley D,Carpenter R,Sommer H,Hartley N,Coen E
    Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum.
    Cell, 1993. 72(1): p. 85-95
  253. Schmidt RJ, et al.
    Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS.
    Plant Cell, 1993. 5(7): p. 729-37
  254. Tsuchimoto S,van der Krol AR,Chua NH
    Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.
    Plant Cell, 1993. 5(8): p. 843-53
  255. Shiraishi H,Okada K,Shimura Y
    Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro.
    Plant J., 1993. 4(2): p. 385-98
  256. Lu ZX,Wu M,Loh CS,Yeong CY,Goh CJ
    Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid.
    Plant Mol. Biol., 1993. 23(4): p. 901-4
  257. Clark SE,Running MP,Meyerowitz EM
    CLAVATA1, a regulator of meristem and flower development in Arabidopsis.
    Development, 1993. 119(2): p. 397-418
  258. Reiser L, et al.
    The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium.
    Cell, 1995. 83(5): p. 735-42
  259. Laux T,Mayer KF,Berger J,Jürgens G
    The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis.
    Development, 1996. 122(1): p. 87-96
  260. Krizek BA,Meyerowitz EM
    Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(9): p. 4063-70
  261. Riechmann JL,Krizek BA,Meyerowitz EM
    Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(10): p. 4793-8
  262. Mizukami Y,Huang H,Tudor M,Hu Y,Ma H
    Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.
    Plant Cell, 1996. 8(5): p. 831-45
  263. Finnegan EJ,Peacock WJ,Dennis ES
    Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(16): p. 8449-54
  264. Venglat SP,Sawhney VK
    Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants.
    Planta, 1996. 198(3): p. 480-7
  265. Flanagan CA,Hu Y,Ma H
    Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Plant J., 1996. 10(2): p. 343-53
  266. Riechmann JL,Wang M,Meyerowitz EM
    DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.
    Nucleic Acids Res., 1996. 24(16): p. 3134-41
  267. Mena M, et al.
    Diversification of C-function activity in maize flower development.
    Science, 1996. 274(5292): p. 1537-40
  268. Okamuro JK,den Boer BG,Lotys-Prass C,Szeto W,Jofuku KD
    Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(24): p. 13831-6
  269. Huang H,Ma H
    FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number.
    Plant Cell, 1997. 9(2): p. 115-34
  270. Roe JL,Nemhauser JL,Zambryski PC
    TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis.
    Plant Cell, 1997. 9(3): p. 335-53
  271. Sieburth LE,Meyerowitz EM
    Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically.
    Plant Cell, 1997. 9(3): p. 355-65
  272. Mizukami Y,Ma H
    Determination of Arabidopsis floral meristem identity by AGAMOUS.
    Plant Cell, 1997. 9(3): p. 393-408
  273. Ito T,Takahashi N,Shimura Y,Okada K
    A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS.
    Plant Cell Physiol., 1997. 38(3): p. 248-58
  274. Jack T,Sieburth L,Meyerowitz E
    Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers.
    Plant J., 1997. 11(4): p. 825-39
  275. Riechmann JL,Meyerowitz EM
    Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
    Mol. Biol. Cell, 1997. 8(7): p. 1243-59
  276. Lolle SJ, et al.
    Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle.
    Dev. Biol., 1997. 189(2): p. 311-21
  277. Chen L,Cheng JC,Castle L,Sung ZR
    EMF genes regulate Arabidopsis inflorescence development.
    Plant Cell, 1997. 9(11): p. 2011-24
  278. Sessions A, et al.
    ETTIN patterns the Arabidopsis floral meristem and reproductive organs.
    Development, 1997. 124(22): p. 4481-91
  279. Fan HY,Hu Y,Tudor M,Ma H
    Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins.
    Plant J., 1997. 12(5): p. 999-1010
  280. Kater MM, et al.
    Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate.
    Plant Cell, 1998. 10(2): p. 171-82
  281. Hill TA,Day CD,Zondlo SC,Thackeray AG,Irish VF
    Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.
    Development, 1998. 125(9): p. 1711-21
  282. Telfer A,Poethig RS
    HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana.
    Development, 1998. 125(10): p. 1889-98
  283. Kim GT,Tsukaya H,Uchimiya H
    The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana.
    Planta, 1998. 206(2): p. 175-83
  284. Sieburth LE,Drews GN,Meyerowitz EM
    Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis.
    Development, 1998. 125(21): p. 4303-12
  285. Tandre K,Svenson M,Svensson ME,Engstr
    Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms.
    Plant J., 1998. 15(5): p. 615-23
  286. Rutledge R, et al.
    Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis.
    Plant J., 1998. 15(5): p. 625-34
  287. Parcy F,Nilsson O,Busch MA,Lee I,Weigel D
    A genetic framework for floral patterning.
    Nature, 1998. 395(6702): p. 561-6
  288. Kim YS,Lee HS,Lee MH,Yoo OJ,Liu JR
    A MADS box gene homologous to AG is expressed in seedlings as well as in flowers of ginseng.
    Plant Cell Physiol., 1998. 39(8): p. 836-45
  289. Kang HG,Jeon JS,Lee S,An G
    Identification of class B and class C floral organ identity genes from rice plants.
    Plant Mol. Biol., 1998. 38(6): p. 1021-9