PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G06120.1
Common NameBHLH45, EN20, F28L1.6, MUTE
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bHLH
Protein Properties Length: 202aa    MW: 22842.5 Da    PI: 9.5833
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G06120.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          HLH  4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55
                 +h ++Er+RR+++N+ +  Lr+l P     + k+ + a+i   ++e+Ik+Lq
                 89************************9...9********************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000837.44E-12154No hitNo description
PROSITE profilePS5088814.684149IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.7E-15167IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:, basic helix-loop-helix (bHLH) domain
PfamPF000104.5E-9250IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003538.0E-11455IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009913Biological Processepidermal cell differentiation
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
PO:0000351anatomyguard mother cell
PO:0004011anatomyinitial cell
Sequence ? help Back to Top
Protein Sequence    Length: 202 aa     Download sequence    Send to blast
Nucleic Localization Signal ? help Back to Top
No. Start End Sequence
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT3G06120-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Strongly expressed in meristemoids and at lower levels in guard mother cells (GMCs) and guard cells. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
UniprotTISSUE SPECIFICITY: Leaf epidermis and flowers. {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:17183265}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a basic helix-loop-helix (bHLH) protein that controls meristemoid differentiation during stomatal development. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata.
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Function -- GeneRIF ? help Back to Top
  1. We report that MUTE controls downstream events directing stomatal differentiation and that MUTE is required for the production of the structure evolutionarily related to stomata, the hydathode pore.
    [PMID: 18450784]
  2. regulates cell-cell interaction involved in stomatal development.
    [PMID: 18453151]
  3. Timely MUTE expression is essential to prevent stomatal fate in SLGCs and to promote their differentiation as pavement cells.
    [PMID: 23662679]
  4. Here, the authors report that EPF1 and its primary receptor ERECTA-LIKE1 (ERL1) target MUTE, a transcription factor specifying the proliferation-to-differentiation switch within the stomatal cell lineages. In turn, MUTE directly induces ERL1.
    [PMID: 28266915]
  5. regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop
    [PMID: 29738710]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT3G24650 (A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT3G26744, AT1G12860
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G06120
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4885800.0AF488580.1 Arabidopsis thaliana clone bHLH045 putative bHLH transcription factor mRNA, partial sequence.
GenBankDQ8636450.0DQ863645.1 Arabidopsis thaliana helix-loop-helix protein (MUTE) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_187263.11e-146basic helix-loop-helix (bHLH) DNA-binding superfamily protein
SwissprotQ9M8K61e-147MUTE_ARATH; Transcription factor MUTE
STRINGAT3G06120.11e-145(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP25315131
Publications ? help Back to Top
  1. Rojas A,Almoguera C,Jordano J
    Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors.
    Plant J., 1999. 20(5): p. 601-10
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
  4. Toledo-Ortiz G,Huq E,Quail PH
    The Arabidopsis basic/helix-loop-helix transcription factor family.
    Plant Cell, 2003. 15(8): p. 1749-70
  5. Underwood BA,Vanderhaeghen R,Whitford R,Town CD,Hilson P
    Simultaneous high-throughput recombinational cloning of open reading frames in closed and open configurations.
    Plant Biotechnol. J., 2006. 4(3): p. 317-24
  6. MacAlister CA,Ohashi-Ito K,Bergmann DC
    Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.
    Nature, 2007. 445(7127): p. 537-40
  7. Pillitteri LJ,Sloan DB,Bogenschutz NL,Torii KU
    Termination of asymmetric cell division and differentiation of stomata.
    Nature, 2007. 445(7127): p. 501-5
  8. Gray JE
    Plant development: three steps for stomata.
    Curr. Biol., 2007. 17(6): p. R213-5
  9. Pillitteri LJ,Torii KU
    Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development.
    Bioessays, 2007. 29(9): p. 861-70
  10. Serna L
    bHLH proteins know when to make a stoma.
    Trends Plant Sci., 2007. 12(11): p. 483-5
  11. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
  12. Pillitteri LJ,Bogenschutz NL,Torii KU
    The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Plant Cell Physiol., 2008. 49(6): p. 934-43
  13. Ohashi-Ito K
    [Three bHLH master regulators and cell-cell interaction involved in stomatal development]
    Tanpakushitsu Kakusan Koso, 2008. 53(6): p. 747-52
  14. Kanaoka MM, et al.
    SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.
    Plant Cell, 2008. 20(7): p. 1775-85
  15. Serna L
    Emerging parallels between stomatal and muscle cell lineages.
    Plant Physiol., 2009. 149(4): p. 1625-31
  16. Liu T,Ohashi-Ito K,Bergmann DC
    Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Development, 2009. 136(13): p. 2265-76
  17. Serna L
    Cell fate transitions during stomatal development.
    Bioessays, 2009. 31(8): p. 865-73
  18. Torii KU,Kanaoka MM,Pillitteri LJ,Bogenschutz NL
    Stomatal development: three steps for cell-type differentiation.
    Plant Signal Behav, 2007. 2(4): p. 311-3
  19. Kang CY,Lian HL,Wang FF,Huang JR,Yang HQ
    Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis.
    Plant Cell, 2009. 21(9): p. 2624-41
  20. Peterson KM,Rychel AL,Torii KU
    Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.
    Plant Cell, 2010. 22(2): p. 296-306
  21. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
  22. MacAlister CA,Bergmann DC
    Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants.
    Evol. Dev., 2011 Mar-Apr. 13(2): p. 182-92
  23. Serna L
    Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Int. J. Dev. Biol., 2011. 55(1): p. 5-10
  24. Pillitteri LJ,Peterson KM,Horst RJ,Torii KU
    Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.
    Plant Cell, 2011. 23(9): p. 3260-75
  25. Yang J,Isabel Ordiz M,Jaworski JG,Beachy RN
    Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata.
    Plant Physiol. Biochem., 2011. 49(12): p. 1448-55
  26. Tanaka Y,Nose T,Jikumaru Y,Kamiya Y
    ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves.
    Plant J., 2013. 74(3): p. 448-57
  27. Trivi
    Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types.
    Plant J., 2013. 75(5): p. 808-22
  28. Niwa T, et al.
    EPIDERMAL PATTERNING FACTOR LIKE5 peptide represses stomatal development by inhibiting meristemoid maintenance in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 2013. 77(6): p. 1287-95
  29. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
  30. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  31. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
  32. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
  33. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
  34. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
  35. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
  36. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
  37. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
  38. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5