PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G52890.1
Common NameANAC, ANAC019, F14G24.16, NAC019
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family NAC
Protein Properties Length: 317aa    MW: 35814.8 Da    PI: 6.4061
Description NAC domain containing protein 19
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G52890.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          NAM   1 lppGfrFhPtdeelvveyLkkkvegkkleleevikevdiykvePwdLpkkvkaeekewyfFskrdkkyatgkrknratksgyWkatgkdkevlskkge 98 
                  lppGfrF Ptdeel+v+yL++k++g +++l + i+e+d+yk++Pw Lp+k+  +ekewyfFs+rd+ky++g+r+nr++ sgyWkatg+dk + + +g+
                  79***************************9.89***************8888899*********************************999988.999 PP

          NAM  99 lvglkktLvfykgrapkgektdWvmheyrl 128
                   vg+kk Lvfy g+apkg+kt+W+mheyrl
                  ****************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019416.02E-6610162IPR003441NAC domain
PROSITE profilePS5100559.54914162IPR003441NAC domain
PfamPF023651.5E-2515139IPR003441NAC domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0007275Biological Processmulticellular organism development
GO:0009414Biological Processresponse to water deprivation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 317 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3swm_A1e-12411687174NAC domain-containing protein 19
3swm_B1e-12411687174NAC domain-containing protein 19
3swm_C1e-12411687174NAC domain-containing protein 19
3swm_D1e-12411687174NAC domain-containing protein 19
3swp_A1e-12411687174NAC domain-containing protein 19
3swp_B1e-12411687174NAC domain-containing protein 19
3swp_C1e-12411687174NAC domain-containing protein 19
3swp_D1e-12411687174NAC domain-containing protein 19
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.286210.0floral meristem| leaf
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G52890-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in stems, flowers, cauline leaves and rosettes. {ECO:0000269|PubMed:12646039, ECO:0000269|PubMed:15319476}.
Functional Description ? help Back to Top
Source Description
TAIRencodes a NAC transcription factor whose expression is induced by drought, high salt, and abscisic acid. This gene binds to ERD1 promoter in vitro.
UniProtTranscription factors that bind specifically to the 5'-CATGTG-3' motif. {ECO:0000269|PubMed:15319476}.
Function -- GeneRIF ? help Back to Top
  1. The anac019 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression.
    [PMID: 18427573]
  2. ANAC019 and AtMYB3 specifically interact with the C-terminal region (640-967) of AtCPL1 containing two double-stranded RNA binding motifs.
    [PMID: 18541146]
  3. ANAC019 was identified as a new positive regulator of abscisic acid signalling.
    [PMID: 19995345]
  4. The DNA-binding domain of ANAC019 inserts the edge of its core beta-sheet into the major groove, while leaving the DNA largely undistorted.
    [PMID: 22455904]
  5. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes.
    [PMID: 23578292]
  6. Involvement of ANAC019 in the regulation of jasmonic acid-induced chlorophyll degradation
    [PMID: 26407000]
  7. We propose a mechanism in which long-range electrostatic interactions between DNA and the negatively charged C-terminal intrinsically disordered region of ANAC019 turns on the pH dependency of the DNA-binding affinity of the N-terminal DNA-binding domain
    [PMID: 29386103]
  8. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    [PMID: 30604322]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by drought, high salinity and abscisic acid (ABA). Slightly up-regulated by jasmonic acid. Not induced by cold treatment. {ECO:0000269|PubMed:12646039, ECO:0000269|PubMed:15319476}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G02930(A), AT1G20440(A), AT3G45140(A), AT5G24780(A), AT5G51070(A), AT5G52300(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G58100, AT1G69600, AT1G77450
IntActSearch Q9C932
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G52890
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0652680.0AY065268.1 Arabidopsis thaliana putative NAM protein (At1g52890) mRNA, complete cds.
GenBankAY1172240.0AY117224.1 Arabidopsis thaliana putative NAM protein (At1g52890) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_175697.10.0NAC domain containing protein 19
SwissprotQ9C9320.0NAC19_ARATH; NAC domain-containing protein 19
STRINGAT1G52890.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1715800
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Greve K,La Cour T,Jensen MK,Poulsen FM,Skriver K
    Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization.
    Biochem. J., 2003. 371(Pt 1): p. 97-108
  3. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  4. Olsen AN, et al.
    Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family.
    Acta Crystallogr. D Biol. Crystallogr., 2004. 60(Pt 1): p. 112-5
  5. Hegedus D, et al.
    Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress.
    Plant Mol. Biol., 2003. 53(3): p. 383-97
  6. Hu W,Wang Y,Bowers C,Ma H
    Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis.
    Plant Mol. Biol., 2003. 53(4): p. 545-63
  7. Ooka H, et al.
    Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
    DNA Res., 2003. 10(6): p. 239-47
  8. Rizhsky L, et al.
    When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.
    Plant Physiol., 2004. 134(4): p. 1683-96
  9. Ernst HA,Olsen AN,Larsen S,Lo Leggio L
    Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.
    EMBO Rep., 2004. 5(3): p. 297-303
  10. Avivi Y, et al.
    Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality.
    Dev. Dyn., 2004. 230(1): p. 12-22
  11. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
  12. Hass C, et al.
    The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis.
    EMBO J., 2004. 23(16): p. 3290-302
  13. Tran LS, et al.
    Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
    Plant Cell, 2004. 16(9): p. 2481-98
  14. Fujita M, et al.
    A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway.
    Plant J., 2004. 39(6): p. 863-76
  15. Reymond P, et al.
    A conserved transcript pattern in response to a specialist and a generalist herbivore.
    Plant Cell, 2004. 16(11): p. 3132-47
  16. Stanley Kim H, et al.
    Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.
    Plant J., 2005. 41(2): p. 212-20
  17. Sun K,Cui Y,Hauser BA
    Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.
    Planta, 2005. 222(4): p. 632-42
  18. Bi YM, et al.
    Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity.
    Plant J., 2005. 44(4): p. 680-92
  19. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
  20. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
  21. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
  22. Mandaokar A, et al.
    Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling.
    Plant J., 2006. 46(6): p. 984-1008
  23. Kaplan B, et al.
    Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.
    Plant Cell, 2006. 18(10): p. 2733-48
  24. Tran LS, et al.
    Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis.
    Plant J., 2007. 49(1): p. 46-63
  25. de Torres-Zabala M, et al.
    Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
    EMBO J., 2007. 26(5): p. 1434-43
  26. Liu JX,Srivastava R,Che P,Howell SH
    Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling.
    Plant J., 2007. 51(5): p. 897-909
  27. Yan Y, et al.
    A downstream mediator in the growth repression limb of the jasmonate pathway.
    Plant Cell, 2007. 19(8): p. 2470-83
  28. Jung C, et al.
    Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.
    Plant Physiol., 2008. 146(2): p. 623-35
  29. Bu Q, et al.
    Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses.
    Cell Res., 2008. 18(7): p. 756-67
  30. Bang WY,Kim SW,Jeong IS,Koiwa H,Bahk JD
    The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors.
    Biochem. Biophys. Res. Commun., 2008. 372(4): p. 907-12
  31. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  32. Krishnaswamy SS, et al.
    Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    BMC Plant Biol., 2008. 8: p. 91
  33. Kunieda T, et al.
    NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis.
    Plant Cell, 2008. 20(10): p. 2631-42
  34. Nakashima K,Ito Y,Yamaguchi-Shinozaki K
    Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses.
    Plant Physiol., 2009. 149(1): p. 88-95
  35. Bu Q, et al.
    The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development.
    Plant Physiol., 2009. 150(1): p. 463-81
  36. Jiang H,Li H,Bu Q,Li C
    The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response.
    Plant Signal Behav, 2009. 4(5): p. 464-6
  37. Jensen MK, et al.
    The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling.
    Biochem. J., 2010. 426(2): p. 183-96
  38. de Brevern AG,Joseph AP
    Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.
    J. Theor. Biol., 2011. 276(1): p. 209-17
  39. Welner DH, et al.
    DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors.
    Biochem. J., 2012. 444(3): p. 395-404
  40. Zheng XY, et al.
    Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
    Cell Host Microbe, 2012. 11(6): p. 587-96
  41. Schweizer F,Bodenhausen N,Lassueur S,Masclaux FG,Reymond P
    Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis.
    Front Plant Sci, 2013. 4: p. 13
  42. Hickman R, et al.
    A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves.
    Plant J., 2013. 75(1): p. 26-39
  43. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  44. Guan Q,Yue X,Zeng H,Zhu J
    The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis.
    Plant Cell, 2014. 26(1): p. 438-53
  45. Chen F, et al.
    Arabidopsis Phytochrome A Directly Targets Numerous Promoters for Individualized Modulation of Genes in a Wide Range of Pathways.
    Plant Cell, 2014. 26(5): p. 1949-1966
  46. Lumba S, et al.
    A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.
    Dev. Cell, 2014. 29(3): p. 360-72
  47. Wang X, et al.
    TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.
    Plant J., 2015. 82(1): p. 151-62
  48. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  49. Wang T, et al.
    Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis.
    Plant Physiol., 2015. 169(2): p. 1027-41
  50. Zhu X, et al.
    Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Plant J., 2015. 84(3): p. 597-610
  51. Takasaki H, et al.
    SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence.
    Plant J., 2015. 84(6): p. 1114-23
  52. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
  53. Ueda M, et al.
    The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response.
    Plant Physiol., 2017. 175(4): p. 1760-1773
  54. Kang M, et al.
    The C-Domain of the NAC Transcription Factor ANAC019 Is Necessary for pH-Tuned DNA Binding through a Histidine Switch in the N-Domain.
    Cell Rep, 2018. 22(5): p. 1141-1150
  55. Sukiran NL,Ma JC,Ma H,Su Z
    ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis.
    Plant Mol. Biol., 2019. 99(1-2): p. 161-174