PlantTFDB
Plant Transcription Factor Database
v4.0
Previous version: v1.0, v2.0, v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G19350.1
Common NameBES1, BZR2
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family BES1
Protein Properties Length: 335aa    MW: 36485.6 Da    PI: 9.5592
Description BES1 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G19350.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1DUF822207.34.2e-64191582144
       DUF822   2 gsgrkptwkErEnnkrRERrRRaiaakiyaGLRaqGnyklpkraDnneVlkALcreAGwvvedDGttyrkgskpleeaeaagssasaspesslqsslk 99 
                  +++rkp+w+ErEnn+rRERrRRa+aakiy+GLRaqGny+lpk++DnneVlkALc eAGwvve+DGttyrkg kpl   ++agss++a+p ss ++s+ 
  AT1G19350.1  19 ATRRKPSWRERENNRRRERRRRAVAAKIYTGLRAQGNYNLPKHCDNNEVLKALCSEAGWVVEEDGTTYRKGHKPL-PGDMAGSSSRATPYSSHNQSPL 115
                  689************************************************************************.********************** PP

       DUF822 100 ssalaspvesysaspksssfpspssldsislasaasllpvlsvls 144
                  ss++ sp+ sy+ sp+sssfpsps++   ++   ++++p+l++ +
  AT1G19350.1 116 SSTFDSPILSYQVSPSSSSFPSPSRVGDPHNI--STIFPFLRNGG 158
                  *************************8776655..67888887765 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF056872.9E-6120141IPR008540BES1/BZR1 plant transcription factor, N-terminal
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009742Biological Processbrassinosteroid mediated signaling pathway
GO:0042742Biological Processdefense response to bacterium
GO:0045892Biological Processnegative regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0005829Cellular Componentcytosol
GO:0001046Molecular Functioncore promoter sequence-specific DNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
Sequence ? help Back to Top
Protein Sequence    Length: 335 aa     Download sequence    Send to blast
MTSDGATSTS AAAAAAAMAT RRKPSWRERE NNRRRERRRR AVAAKIYTGL RAQGNYNLPK  60
HCDNNEVLKA LCSEAGWVVE EDGTTYRKGH KPLPGDMAGS SSRATPYSSH NQSPLSSTFD  120
SPILSYQVSP SSSSFPSPSR VGDPHNISTI FPFLRNGGIP SSLPPLRISN SAPVTPPVSS  180
PTSRNPKPLP TWESFTKQSM SMAAKQSMTS LNYPFYAVSA PASPTHHRQF HAPATIPECD  240
ESDSSTVDSG HWISFQKFAQ QQPFSASMVP TSPTFNLVKP APQQLSPNTA AIQEIGQSSE  300
FKFENSQVKP WEGERIHDVA MEDLELTLGN GKAHS
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
12039RRKPSWRERENNRRRERRRR
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.242760.0bud| flower| root| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
Genevisible259955_s_at2e-49
Expression AtlasAT1G19350-
AtGenExpressAT1G19350-
Functional Description ? help Back to Top
Source Description
TAIREncodes brassinosteroid (BR) signalling protein that accumulates in the nucleus as dephosphorylated form in response to BRs. Is phosphorylated by the BIN2 GSK3 kinase. It synergistically interacts with BIM1 to bind to E box sequences (CANNTG). The protein contains a nuclear localization signal (NLS), followed by a highly conserved amino-terminal domain (N) shared by all family members, a BIN2 phosphorylation domain (P), a PEST motif, involved in protein degradation in the absence of BR, and a carboxyl-terminal domain. BES1 can interact with the ELF6 and REF6 Jumonji N/C-domain containing proteins and may direct them to modify histone methylation upstream of some brassinosteroid responsive-genes
Function -- GeneRIF ? help Back to Top
  1. BES1 recruits transcriptional regulators ELF6 and REF6 to regulate target gene expression and coordinate brassinosteroids responses with other developmental processes such as control of flowering time.
    [PMID: 18467490]
  2. BES1 and AtMYB30 function cooperatively to promote brassinosteroid target gene expression.
    [PMID: 19170933]
  3. AtIWS1 is recruited to target genes by BES1 to promote gene expression during transcription elongation process.
    [PMID: 20139304]
  4. BES1 is a nucleocytoplasmic signal transmitter. Its subcellular localization modulates brassinosteroid signal output intensity. Phosphorylation at 12 sites induces its nuclear export by regulating its binding affinity with 14-3-3 proteins.
    [PMID: 20387034]
  5. Cytosolic BSU1 and nuclear BIN2 might be required for the efficient subcellular localization of BES1 in BR signaling.
    [PMID: 20387035]
  6. BES1 directly regulates many brassinosteroid-responsive genes by initiating a hierarchical transcription network downstream of BR signaling.
    [PMID: 21214652]
  7. altered patterns of BES1 phosphorylation in roc1-1D, roc1-2 and roc1-3 mutants
    [PMID: 22463079]
  8. role in regulation of glucosinolate biosynthesis by brassinosteroids
    [PMID: 23580754]
  9. HAT1 is a BES1 target gene and that HAT1 functions as a BES1 co-repressor. HAT1 appears to function redundantly with other family members such as HAT3 to mediate brassinosteroid (BR) responses.
    [PMID: 24164091]
  10. While BIN2 phosphorylates and destabilizes BES1/BZR1, BIN2 phosphorylated MYBL2 and HAT1 appear to be stabilized.
    [PMID: 24526246]
  11. The BES1-TPL-HDA19 repressor complex controls epigenetic silencing of ABI3 and thereby suppresses the abscisic acid signalling output during early seedling development.
    [PMID: 24938150]
  12. propose that the environmentally controlled developmental switch from deep to shallow root architecture involves reductions in BZR1 and BES1/BZR2 levels in the nucleus, which likely play key roles in plant adaptation to phosphate-deficient environments
    [PMID: 25136063]
  13. BES1 is identified as a unique direct substrate of MPK6 in Pathogen-associated molecular patterns (PAMP)-triggered immunity signaling.
    [PMID: 25609555]
  14. BES1-L is a more important isoform of BES1 in Arabidopsis and may have contributed to the evolution and expansion of A. thaliana.
    [PMID: 25649439]
  15. The amino-terminal and central parts of BES1 are responsible for its physical interaction with HSP90.3 in vitro. Additionally, BZR1 is a novel HSP90 partner aside from two BR signaling components previously identified as its clients.
    [PMID: 25778412]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00073ChIP-chip26531826Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT1G19350.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G20570(R), AT2G43060(A), AT4G38850(A), AT5G10140(R), AT5G44190(R), AT5G57560(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDbrassinosteroid
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69010An unspecified isoform of BES1 interacts with BIM2.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G69010, AT1G71030, AT1G75080
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G19350
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0650410.0AY065041.1 Arabidopsis thaliana At1g19350/F18O14_4 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_973863.10.0protein brassinazole-resistant 2
SwissprotQ9LN630.0BZR2_ARATH; Protein BRASSINAZOLE-RESISTANT 2
TrEMBLF4HP450.0F4HP45_ARATH; Protein brassinazole-resistant 2
STRINGAT1G19350.30.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Wang ZY, et al.
    Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis.
    Dev. Cell, 2002. 2(4): p. 505-13
    [PMID:11970900]
  2. Yin Y, et al.
    BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation.
    Cell, 2002. 109(2): p. 181-91
    [PMID:12007405]
  3. He JX,Gendron JM,Yang Y,Li J,Wang ZY
    The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(15): p. 10185-90
    [PMID:12114546]
  4. Zhao J, et al.
    Two putative BIN2 substrates are nuclear components of brassinosteroid signaling.
    Plant Physiol., 2002. 130(3): p. 1221-9
    [PMID:12427989]
  5. Mora-Garc
    Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis.
    Genes Dev., 2004. 18(4): p. 448-60
    [PMID:14977918]
  6. Nemhauser JL,Mockler TC,Chory J
    Interdependency of brassinosteroid and auxin signaling in Arabidopsis.
    PLoS Biol., 2004. 2(9): p. E258
    [PMID:15328536]
  7. Yin Y, et al.
    A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis.
    Cell, 2005. 120(2): p. 249-59
    [PMID:15680330]
  8. Vert G,Chory J
    Downstream nuclear events in brassinosteroid signalling.
    Nature, 2006. 441(7089): p. 96-100
    [PMID:16672972]
  9. M
    Molecular analysis of brassinosteroid action.
    Plant Biol (Stuttg), 2006. 8(3): p. 291-6
    [PMID:16807820]
  10. Belkhadir Y,Chory J
    Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface.
    Science, 2006. 314(5804): p. 1410-1
    [PMID:17138891]
  11. Zhang J,Cao ML,Huang YB,Wu BJ
    [Study of hrpN(CSDS001) and the gene expression profile of Arabidopsis thaliana induced by Harpin(CSDS001)].
    Yi Chuan, 2007. 29(5): p. 629-36
    [PMID:17548335]
  12. de Vries SC
    14-3-3 proteins in plant brassinosteroid signaling.
    Dev. Cell, 2007. 13(2): p. 162-4
    [PMID:17681126]
  13. Gampala SS, et al.
    An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis.
    Dev. Cell, 2007. 13(2): p. 177-89
    [PMID:17681130]
  14. Bai MY, et al.
    Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(34): p. 13839-44
    [PMID:17699623]
  15. Yu X, et al.
    Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(21): p. 7618-23
    [PMID:18467490]
  16. Clouse SD
    The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(21): p. 7345-6
    [PMID:18495930]
  17. Vert G,Walcher CL,Chory J,Nemhauser JL
    Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(28): p. 9829-34
    [PMID:18599455]
  18. Li L, et al.
    Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression.
    Plant J., 2009. 58(2): p. 275-86
    [PMID:19170933]
  19. Zhang S,Cai Z,Wang X
    The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(11): p. 4543-8
    [PMID:19240210]
  20. Jones AM, et al.
    Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana.
    J Proteomics, 2009. 72(3): p. 439-51
    [PMID:19245862]
  21. Reiland S, et al.
    Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks.
    Plant Physiol., 2009. 150(2): p. 889-903
    [PMID:19376835]
  22. Srivastava R,Liu JX,Guo H,Yin Y,Howell SH
    Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis.
    Plant J., 2009. 59(6): p. 930-9
    [PMID:19473327]
  23. Guo H,Ye H,Li L,Yin Y
    A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana.
    Plant Signal Behav, 2009. 4(8): p. 784-6
    [PMID:19820315]
  24. Zhang LY, et al.
    Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis.
    Plant Cell, 2009. 21(12): p. 3767-80
    [PMID:20009022]
  25. Rozhon W,Mayerhofer J,Petutschnig E,Fujioka S,Jonak C
    ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway.
    Plant J., 2010. 62(2): p. 215-23
    [PMID:20128883]
  26. Li L,Ye H,Guo H,Yin Y
    Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(8): p. 3918-23
    [PMID:20139304]
  27. Ye Q, et al.
    Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(13): p. 6100-5
    [PMID:20231470]
  28. Ryu H,Cho H,Kim K,Hwang I
    Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling.
    Mol. Cells, 2010. 29(3): p. 283-90
    [PMID:20387034]
  29. Ryu H,Kim K,Cho H,Hwang I
    Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling.
    Mol. Cells, 2010. 29(3): p. 291-6
    [PMID:20387035]
  30. Peng P,Zhao J,Zhu Y,Asami T,Li J
    A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates.
    J. Biol. Chem., 2010. 285(32): p. 24646-53
    [PMID:20522560]
  31. Sun Y, et al.
    Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis.
    Dev. Cell, 2010. 19(5): p. 765-77
    [PMID:21074725]
  32. Yu X, et al.
    A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.
    Plant J., 2011. 65(4): p. 634-46
    [PMID:21214652]
  33. Tang W, et al.
    PP2A activates brassinosteroid-responsive gene
    Nat. Cell Biol., 2011. 13(2): p. 124-31
    [PMID:21258370]
  34. Hacham Y, et al.
    Brassinosteroid perception in the epidermis controls root meristem size.
    Development, 2011. 138(5): p. 839-48
    [PMID:21270053]
  35. Xie L,Yang C,Wang X
    Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis.
    J. Exp. Bot., 2011. 62(13): p. 4495-506
    [PMID:21617247]
  36. Kim TW,Guan S,Burlingame AL,Wang ZY
    The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2.
    Mol. Cell, 2011. 43(4): p. 561-71
    [PMID:21855796]
  37. Walcher CL,Nemhauser JL
    Bipartite promoter element required for auxin response.
    Plant Physiol., 2012. 158(1): p. 273-82
    [PMID:22100645]
  38. Oh MH,Wang X,Clouse SD,Huber SC
    Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(1): p. 327-32
    [PMID:22184234]
  39. Gou X, et al.
    Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling.
    PLoS Genet., 2012. 8(1): p. e1002452
    [PMID:22253607]
  40. Trupkin SA,Mora-Garc
    The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity.
    Plant J., 2012. 71(5): p. 712-23
    [PMID:22463079]
  41. Chung Y, et al.
    Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant.
    Plant Mol. Biol., 2012. 80(4-5): p. 489-501
    [PMID:22961663]
  42. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  43. Ye H,Li L,Guo H,Yin Y
    MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(49): p. 20142-7
    [PMID:23169658]
  44. Lachowiec J, et al.
    The protein chaperone HSP90 can facilitate the divergence of gene duplicates.
    Genetics, 2013. 193(4): p. 1269-77
    [PMID:23410833]
  45. Hao J,Yin Y,Fei SZ
    Brassinosteroid signaling network: implications on yield and stress tolerance.
    Plant Cell Rep., 2013. 32(7): p. 1017-30
    [PMID:23568410]
  46. Guo R, et al.
    BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis.
    J. Exp. Bot., 2013. 64(8): p. 2401-12
    [PMID:23580754]
  47. Li QF,He JX
    Mechanisms of signaling crosstalk between brassinosteroids and gibberellins.
    Plant Signal Behav, 2013. 8(7): p. e24686
    [PMID:23603943]
  48. Lin W, et al.
    Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(29): p. 12114-9
    [PMID:23818580]
  49. Zhang D, et al.
    Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis.
    Plant J., 2014. 77(1): p. 59-70
    [PMID:24164091]
  50. Wang Y, et al.
    Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching.
    Dev. Cell, 2013. 27(6): p. 681-8
    [PMID:24369836]
  51. Shigeta T, et al.
    Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells.
    Plant Cell Rep., 2014. 33(3): p. 499-510
    [PMID:24374469]
  52. Zhang D, et al.
    Transcription factors involved in brassinosteroid repressed gene expression and their regulation by BIN2 kinase.
    Plant Signal Behav, 2014. 9(1): p. e27849
    [PMID:24526246]
  53. Wang X, et al.
    Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana.
    Mol Plant, 2014. 7(8): p. 1303-15
    [PMID:24838002]
  54. Cai Z, et al.
    GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(26): p. 9651-6
    [PMID:24928519]
  55. Ryu H,Cho H,Bae W,Hwang I
    Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3.
    Nat Commun, 2014. 5: p. 4138
    [PMID:24938150]
  56. Vilarrasa-Blasi J, et al.
    Regulation of plant stem cell quiescence by a brassinosteroid signaling module.
    Dev. Cell, 2014. 30(1): p. 36-47
    [PMID:24981610]
  57. Singh AP, et al.
    Activity of the brassinosteroid transcription factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 blocks developmental reprogramming in response to low phosphate availability.
    Plant Physiol., 2014. 166(2): p. 678-88
    [PMID:25136063]
  58. Kang S, et al.
    The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity.
    Plant Physiol., 2015. 167(3): p. 1076-86
    [PMID:25609555]
  59. Jiang J,Zhang C,Wang X
    A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana.
    Plant Cell, 2015. 27(2): p. 361-74
    [PMID:25649439]
  60. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  61. Shigeta T, et al.
    Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor.
    J. Plant Physiol., 2015. 178: p. 69-73
    [PMID:25778412]