PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Previous version: v3.0 v4.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G01060.4
Common NameLHY, LHY1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MYB_related
Protein Properties Length: 644aa    MW: 70309.9 Da    PI: 6.0252
Description MYB_related family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G01060.4genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
  Myb_DNA-binding  1 rgrWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwqky 47
                     r rWT++E+e++++a +++G   W +I +++g ++t+ q++s+ qk+
                     78******************88.*********.************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5129419.9771973IPR017930Myb domain
TIGRFAMsTIGR015572.9E-172271IPR006447Myb domain, plants
SMARTSM007172.4E-122371IPR001005SANT/Myb domain
PfamPF002493.5E-132467IPR001005SANT/Myb domain
CDDcd001672.88E-92669No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009409Biological Processresponse to cold
GO:0009651Biological Processresponse to salt stress
GO:0009723Biological Processresponse to ethylene
GO:0009733Biological Processresponse to auxin
GO:0009737Biological Processresponse to abscisic acid
GO:0009739Biological Processresponse to gibberellin
GO:0009751Biological Processresponse to salicylic acid
GO:0009753Biological Processresponse to jasmonic acid
GO:0042754Biological Processnegative regulation of circadian rhythm
GO:0043433Biological Processnegative regulation of sequence-specific DNA binding transcription factor activity
GO:0046686Biological Processresponse to cadmium ion
GO:0048574Biological Processlong-day photoperiodism, flowering
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 644 aa     Download sequence    Send to blast
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.254660.0flower| vegetative tissue
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G01060-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in leaves, roots, stems, flowers and siliques. {ECO:0000269|PubMed:19095940, ECO:0000269|PubMed:19218364}.
Functional Description ? help Back to Top
Source Description
TAIRLHY encodes a myb-related putative transcription factor involved in circadian rhythm along with another myb transcription factor CCA1
UniProtTranscription factor involved in the circadian clock. Binds to the promoter region of APRR1/TOC1 and TCP21/CHE to repress their transcription. Represses both CCA1 and itself. {ECO:0000269|PubMed:12015970, ECO:0000269|PubMed:19095940, ECO:0000269|PubMed:19218364, ECO:0000269|PubMed:9657154}.
Function -- GeneRIF ? help Back to Top
  1. Accumulation of the LHY protein in the lhy-1 mutant was altered by the det1-1 mutation and through the proteasome pathway.
    [PMID: 15988568]
  2. The function of ELF3 and ELF4 in their light-regulated expression associated with CCA1, LHY, and TOC1 as part of the central oscillator of the circadian clock in Arabidopsis is reported.
    [PMID: 16212608]
  3. The linkages of TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway were studied.
    [PMID: 17540692]
  4. CCA1 and LHY delay flowering time under continuous light by reducing the accumulation of SVP.
    [PMID: 19011118]
  5. CCA1 and LHY function synergistically in regulating circadian rhythms of Arabidopsis.
    [PMID: 19218364]
  6. LHY/CCA1 regulates a pathway negatively controlling flowering locus T (FT), possibly via ELF3-SVP/FLC.
    [PMID: 19383102]
  7. A conserved G-Box motif contributes to the rhythmic expression of LHY.
    [PMID: 19789276]
  8. LHY ubiquitination by SINAT5 was inhibited by DET1.
    [PMID: 20599732]
  9. Results reveal a role of PRR7 and PRR9 in regulating CCA1 and LHY activities in response to ambient temperature.
    [PMID: 21098730]
  10. CCA1/LHY-mediated output from the circadian clock contributes to plant cold tolerance through regulation of the CBF cold-response pathway.
    [PMID: 21471455]
  11. Functional interactions between the clock proteins LHY and CCA1 and the photoreceptor PhyB control organ elongation and flowering time.
    [PMID: 21822060]
  12. Interaction of Arabidopsis DET1 with LHY in mediating transcriptional repression in the plant circadian clock
    [PMID: 21884973]
  13. Our computational analysis suggests that TOC1 is a repressor of the morning genes Late Elongated Hypocotyl and Circadian Clock Associated1 rather than an activator as first conceived.
    [PMID: 22395476]
  14. Rhythmic expression of LHY under light-dark cycling conditions correlates with histone modification.
    [PMID: 22878891]
  15. Histone 3 activating marks associated with the translational start sites of CCA1/LHY and TOC1 are circadian regulated.
    [PMID: 23128602]
  16. Transcriptional co-regulators PRR9, PRR7 and PRR5 inhibit morning loop LHY and CCA1 expression by binding to their promoters
    [PMID: 24267177]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Circadian-regulation with peak levels occurring around 1 hour after dawn. Up-regulated by APRR1/TOC1 and transiently by light treatment. Down-regulated by APRR5, APRR7 and APRR9. {ECO:0000269|PubMed:12574129, ECO:0000269|PubMed:19095940, ECO:0000269|PubMed:19218364, ECO:0000269|PubMed:19286557, ECO:0000269|PubMed:20233950, ECO:0000269|PubMed:9657154}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G09530 (A), AT2G46830 (R), AT3G46640 (A), AT5G37260 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G04400(A), AT1G22770(R), AT1G32900(A), AT1G65480(A), AT2G21660(R), AT2G40080(R), AT2G46790(A), AT3G46640(R), AT5G02810(A), AT5G15840(R), AT5G61380(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid, auxin, ethylene, gibberellin, jasmonic acid, salicylic acid
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G01060
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK3167280.0AK316728.1 Arabidopsis thaliana AT1G01060 mRNA, complete cds, clone: RAFL04-17-F21.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001077437.10.0Homeodomain-like superfamily protein
SwissprotQ6R0H10.0LHY_ARATH; Protein LHY
TrEMBLA0A178W6960.0A0A178W696_ARATH; LHY1
TrEMBLF4HQG90.0F4HQG9_ARATH; Homeodomain-like superfamily protein
STRINGAT1G01060.20.0(Arabidopsis thaliana)
Publications ? help Back to Top
  1. Staiger D,Heintzen C
    The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
    Chronobiol. Int., 1999. 16(1): p. 1-16
  2. Green RM,Tobin EM
    Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(7): p. 4176-9
  3. Fowler S, et al.
    GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.
    EMBO J., 1999. 18(17): p. 4679-88
  4. Park DH, et al.
    Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene.
    Science, 1999. 285(5433): p. 1579-82
  5. Sugano S,Andronis C,Ong MS,Green RM,Tobin EM
    The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(22): p. 12362-6
  6. Coupland G, et al.
    The regulation of flowering time by daylength in Arabidopsis.
    Symp. Soc. Exp. Biol., 1998. 51: p. 105-10
  7. Martínez-García JF,Huq E,Quail PH
    Direct targeting of light signals to a promoter element-bound transcription factor.
    Science, 2000. 288(5467): p. 859-63
  8. Fairchild CD,Schumaker MA,Quail PH
    HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction.
    Genes Dev., 2000. 14(18): p. 2377-91
  9. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  10. Schaffer R, et al.
    Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis.
    Plant Cell, 2001. 13(1): p. 113-23
  11. Hicks KA,Albertson TM,Wagner DR
    EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis.
    Plant Cell, 2001. 13(6): p. 1281-92
  12. Xu Y,Johnson CH
    A clock- and light-regulated gene that links the circadian oscillator to LHCB gene expression.
    Plant Cell, 2001. 13(6): p. 1411-25
  13. Alabadí D, et al.
    Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
    Science, 2001. 293(5531): p. 880-3
  14. Makino S,Matsushika A,Kojima M,Yamashino T,Mizuno T
    The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants.
    Plant Cell Physiol., 2002. 43(1): p. 58-69
  15. Alabad
    Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.
    Curr. Biol., 2002. 12(9): p. 757-61
  16. Mizoguchi T, et al.
    LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
    Dev. Cell, 2002. 2(5): p. 629-41
  17. Mouradov A,Cremer F,Coupland G
    Control of flowering time: interacting pathways as a basis for diversity.
    Plant Cell, 2002. 14 Suppl: p. S111-30
  18. Green RM,Tingay S,Wang ZY,Tobin EM
    Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
    Plant Physiol., 2002. 129(2): p. 576-84
  19. Devlin PF
    Signs of the time: environmental input to the circadian clock.
    J. Exp. Bot., 2002. 53(374): p. 1535-50
  20. Carr
    MYB transcription factors in the Arabidopsis circadian clock.
    J. Exp. Bot., 2002. 53(374): p. 1551-7
  21. Matsushika A,Imamura A,Yamashino T,Mizuno T
    Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana.
    Plant Cell Physiol., 2002. 43(8): p. 833-43
  22. Hall A,Kozma-Bogn
    Distinct regulation of CAB and PHYB gene expression by similar circadian clocks.
    Plant J., 2002. 32(4): p. 529-37
  23. Sato E,Nakamichi N,Yamashino T,Mizuno T
    Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis.
    Plant Cell Physiol., 2002. 43(11): p. 1374-85
  24. M
    Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis.
    Plant Cell, 2003. 15(1): p. 223-36
  25. Kim JY,Song HR,Taylor BL,Carr
    Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY.
    EMBO J., 2003. 22(4): p. 935-44
  26. Nakamichi N,Matsushika A,Yamashino T,Mizuno T
    Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(3): p. 360-5
  27. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
  28. Tenorio G,Orea A,Romero JM,M
    Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle.
    Plant Mol. Biol., 2003. 51(6): p. 949-58
  29. Eriksson ME,Millar AJ
    The circadian clock. A plant's best friend in a spinning world.
    Plant Physiol., 2003. 132(2): p. 732-8
  30. Kuno N, et al.
    The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis.
    Plant Cell, 2003. 15(10): p. 2476-88
  31. Hall A, et al.
    The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks.
    Plant Cell, 2003. 15(11): p. 2719-29
  32. Kaldis AD,Kousidis P,Kesanopoulos K,Prombona A
    Light and circadian regulation in the expression of LHY and Lhcb genes in Phaseolus vulgaris.
    Plant Mol. Biol., 2003. 52(5): p. 981-97
  33. Kaczorowski KA,Quail PH
    Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock.
    Plant Cell, 2003. 15(11): p. 2654-65
  34. Khanna R,Kikis EA,Quail PH
    EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation.
    Plant Physiol., 2003. 133(4): p. 1530-8
  35. Ito S, et al.
    Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(11): p. 1237-45
  36. Oda A,Fujiwara S,Kamada H,Coupland G,Mizoguchi T
    Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression.
    FEBS Lett., 2004. 557(1-3): p. 259-64
  37. Searle I,Coupland G
    Induction of flowering by seasonal changes in photoperiod.
    EMBO J., 2004. 23(6): p. 1217-22
  38. Yasuhara M, et al.
    Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis.
    J. Exp. Bot., 2004. 55(405): p. 2015-27
  39. Farré EM,Harmer SL,Harmon FG,Yanovsky MJ,Kay SA
    Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
    Curr. Biol., 2005. 15(1): p. 47-54
  40. Fujimori T,Sato E,Yamashino T,Mizuno T
    PRR5 (PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 2005. 69(2): p. 426-30
  41. Boxall SF, et al.
    Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress.
    Plant Physiol., 2005. 137(3): p. 969-82
  42. Chang WC,Li CW,Chen BS
    Quantitative inference of dynamic regulatory pathways via microarray data.
    BMC Bioinformatics, 2005. 6: p. 44
  43. Nakamichi N,Kita M,Ito S,Yamashino T,Mizuno T
    PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana.
    Plant Cell Physiol., 2005. 46(5): p. 686-98
  44. Harmer SL,Kay SA
    Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis.
    Plant Cell, 2005. 17(7): p. 1926-40
  45. Song HR,Carré IA
    DET1 regulates the proteasomal degradation of LHY, a component of the Arabidopsis circadian clock.
    Plant Mol. Biol., 2005. 57(5): p. 761-71
  46. Hazen SP, et al.
    LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(29): p. 10387-92
  47. Mizoguchi T, et al.
    Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.
    Plant Cell, 2005. 17(8): p. 2255-70
  48. Lu Y,Gehan JP,Sharkey TD
    Daylength and circadian effects on starch degradation and maltose metabolism.
    Plant Physiol., 2005. 138(4): p. 2280-91
  49. Onai K,Ishiura M
    PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock.
    Genes Cells, 2005. 10(10): p. 963-72
  50. Kikis EA,Khanna R,Quail PH
    ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY.
    Plant J., 2005. 44(2): p. 300-13
  51. Salom
    Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period.
    Plant Cell, 2006. 18(1): p. 55-69
  52. Yanhui C, et al.
    The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.
    Plant Mol. Biol., 2006. 60(1): p. 107-24
  53. Miwa K,Serikawa M,Suzuki S,Kondo T,Oyama T
    Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses.
    Plant Cell Physiol., 2006. 47(5): p. 601-12
  54. McClung CR
    Plant circadian rhythms.
    Plant Cell, 2006. 18(4): p. 792-803
  55. Gould PD, et al.
    The molecular basis of temperature compensation in the Arabidopsis circadian clock.
    Plant Cell, 2006. 18(5): p. 1177-87
  56. Chen M,Ni M
    RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Plant J., 2006. 46(5): p. 823-33
  57. Locke JC, et al.
    Extension of a genetic network model by iterative experimentation and mathematical analysis.
    Mol. Syst. Biol., 2005. 1: p. 2005.0013
  58. Forger D,Drapeau M,Collins B,Blau J
    A new model for circadian clock research?
    Mol. Syst. Biol., 2005. 1: p. 2005.0014
  59. Martin-Tryon EL,Kreps JA,Harmer SL
    GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Plant Physiol., 2007. 143(1): p. 473-86
  60. Zeilinger MN,Farr
    A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9.
    Mol. Syst. Biol., 2006. 2: p. 58
  61. Locke JC, et al.
    Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
    Mol. Syst. Biol., 2006. 2: p. 59
  62. Loivam
    Circadian rhythms of isoprene biosynthesis in grey poplar leaves.
    Plant Physiol., 2007. 143(1): p. 540-51
  63. Murakami M,Tago Y,Yamashino T,Mizuno T
    Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa.
    Plant Cell Physiol., 2007. 48(1): p. 110-21
  64. Lee J, et al.
    Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development.
    Plant Cell, 2007. 19(3): p. 731-49
  65. Martini J, et al.
    Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time.
    J. Struct. Biol., 2007. 158(3): p. 401-9
  66. Hecht V, et al.
    Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.
    Plant Physiol., 2007. 144(2): p. 648-61
  67. Ding Z,Doyle MR,Amasino RM,Davis SJ
    A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation.
    Genetics, 2007. 176(3): p. 1501-10
  68. Ding Z,Millar AJ,Davis AM,Davis SJ
    TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock.
    Plant Cell, 2007. 19(5): p. 1522-36
  69. Nakamichi N, et al.
    Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway.
    Plant Cell Physiol., 2007. 48(6): p. 822-32
  70. Ito S, et al.
    Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana.
    Plant Cell Physiol., 2007. 48(7): p. 971-83
  71. Niwa Y, et al.
    Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana.
    Plant Cell Physiol., 2007. 48(7): p. 925-37
  72. Zhang X, et al.
    Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis.
    Plant J., 2007. 51(3): p. 512-25
  73. Perales M,M
    A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.
    Plant Cell, 2007. 19(7): p. 2111-23
  74. Kevei E, et al.
    Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1.
    Curr. Biol., 2007. 17(17): p. 1456-64
  75. Farr
    PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis.
    Plant J., 2007. 52(3): p. 548-60
  76. Xu X, et al.
    Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis.
    Plant Cell, 2007. 19(11): p. 3474-90
  77. Ito S, et al.
    Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana.
    Plant Cell Physiol., 2008. 49(2): p. 201-13
  78. Kant P, et al.
    Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses.
    Plant Cell Environ., 2008. 31(6): p. 697-714
  79. Serikawa M,Miwa K,Kondo T,Oyama T
    Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba.
    Plant Physiol., 2008. 146(4): p. 1952-63
  80. Kim J,Kim Y,Yeom M,Kim JH,Nam HG
    FIONA1 is essential for regulating period length in the Arabidopsis circadian clock.
    Plant Cell, 2008. 20(2): p. 307-19
  81. Abe M,Fujiwara M,Kurotani K,Yokoi S,Shimamoto K
    Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP).
    Plant Cell Physiol., 2008. 49(3): p. 420-32
  82. Bieniawska Z, et al.
    Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome.
    Plant Physiol., 2008. 147(1): p. 263-79
  83. Kawamura M,Ito S,Nakamichi N,Yamashino T,Mizuno T
    The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 2008. 72(5): p. 1307-16
  84. Salom
    Circadian timekeeping during early Arabidopsis development.
    Plant Physiol., 2008. 147(3): p. 1110-25
  85. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  86. Wu JF,Wang Y,Wu SH
    Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering.
    Plant Physiol., 2008. 148(2): p. 948-59
  87. Liu H, et al.
    Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max).
    J. Plant Physiol., 2009. 166(3): p. 278-89
  88. Fujiwara S, et al.
    Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis.
    Plant Cell, 2008. 20(11): p. 2960-71
  89. Ni Z, et al.
    Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids.
    Nature, 2009. 457(7227): p. 327-31
  90. Knowles SM,Lu SX,Tobin EM
    Testing time: can ethanol-induced pulses of proposed oscillator components phase shift rhythms in Arabidopsis?
    J. Biol. Rhythms, 2008. 23(6): p. 463-71
  91. James AB, et al.
    The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots.
    Science, 2008. 322(5909): p. 1832-5
  92. Ito S, et al.
    A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene.
    Plant Cell Physiol., 2009. 50(2): p. 290-303
  93. Takata N, et al.
    Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2.
    New Phytol., 2009. 181(4): p. 808-19
  94. Lu SX,Knowles SM,Andronis C,Ong MS,Tobin EM
    CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis.
    Plant Physiol., 2009. 150(2): p. 834-43
  95. Pruneda-Paz JL,Breton G,Para A,Kay SA
    A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.
    Science, 2009. 323(5920): p. 1481-5
  96. Proels RK,Roitsch T
    Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm.
    J. Exp. Bot., 2009. 60(6): p. 1555-67
  97. Yakir E, et al.
    Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of Arabidopsis.
    Plant Physiol., 2009. 150(2): p. 844-57
  98. Robertson FC,Webb AA
    Revolutionary functional genomics liberates CHE.
    Nat. Chem. Biol., 2009. 5(5): p. 276-7
  99. Stephenson PG,Fankhauser C,Terry MJ
    PIF3 is a repressor of chloroplast development.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(18): p. 7654-9
  100. Yoshida R, et al.
    Possible role of early flowering 3 (ELF3) in clock-dependent floral regulation by short vegetative phase (SVP) in Arabidopsis thaliana.
    New Phytol., 2009. 182(4): p. 838-50
  101. Penfield S,Hall A
    A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis.
    Plant Cell, 2009. 21(6): p. 1722-32
  102. Okada R, et al.
    Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens.
    Plant J., 2009. 60(3): p. 551-63
  103. Ishida K,Niwa Y,Yamashino T,Mizuno T
    A genome-wide compilation of the two-component systems in Lotus japonicus.
    DNA Res., 2009. 16(4): p. 237-47
  104. Spensley M, et al.
    Evolutionarily conserved regulatory motifs in the promoter of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL.
    Plant Cell, 2009. 21(9): p. 2606-23
  105. Rawat R, et al.
    REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(39): p. 16883-8
  106. Nakamichi N, et al.
    Linkage between circadian clock and tricarboxylic acid cycle in Arabidopsis.
    Plant Signal Behav, 2009. 4(7): p. 660-2
  107. Liew LC, et al.
    DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock.
    Plant Cell, 2009. 21(10): p. 3198-211
  108. Ovadia A,Tabibian-Keissar H,Cohen Y,Kenigsbuch D
    The 5'UTR of CCA1 includes an autoregulatory cis element that segregates between light and circadian regulation of CCA1 and LHY.
    Plant Mol. Biol., 2010. 72(6): p. 659-71
  109. Okada R,Satbhai SB,Aoki S
    Photoperiod-dependent regulation of cell growth by PpCCA1a and PpCCA1b genes encoding single-myb clock proteins in the moss Physcomitrella patens.
    Genes Genet. Syst., 2009. 84(5): p. 379-84
  110. Nakamichi N, et al.
    PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
    Plant Cell, 2010. 22(3): p. 594-605
  111. Andr
    Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles.
    Plant Physiol., 2010. 153(1): p. 170-84
  112. Baudry A, et al.
    F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression.
    Plant Cell, 2010. 22(3): p. 606-22
  113. Takata N,Saito S,Saito CT,Uemura M
    Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators.
    BMC Evol. Biol., 2010. 10: p. 126
  114. Graf A,Schlereth A,Stitt M,Smith AM
    Circadian control of carbohydrate availability for growth in Arabidopsis plants at night.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(20): p. 9458-63
  115. Park BS, et al.
    Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1.
    Biochem. Biophys. Res. Commun., 2010. 398(2): p. 242-6
  116. Hanada K, et al.
    Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.
    Mol. Biol. Evol., 2011. 28(1): p. 377-82
  117. Salom
    The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation.
    Plant Cell, 2010. 22(11): p. 3650-61
  118. Lu SX, et al.
    The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock.
    Plant Physiol., 2011. 155(2): p. 906-15
  119. Giraud E, et al.
    TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana.
    Plant Cell, 2010. 22(12): p. 3921-34
  120. Barajas-L
    Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor.
    J. Exp. Bot., 2011. 62(6): p. 2039-51
  121. Farinas B,Mas P
    Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation.
    Plant J., 2011. 66(2): p. 318-29
  122. Dixon LE, et al.
    Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis.
    Curr. Biol., 2011. 21(2): p. 120-5
  123. Nefissi R, et al.
    Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    J. Exp. Bot., 2011. 62(8): p. 2731-44
  124. Yoo SK,Hong SM,Lee JS,Ahn JH
    A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control.
    Mol. Cells, 2011. 31(3): p. 281-7
  125. Dai S, et al.
    BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock.
    Plant Cell, 2011. 23(3): p. 961-72
  126. O'Neill JS,van Ooijen G,Le Bihan T,Millar AJ
    Circadian clock parameter measurement: characterization of clock transcription factors using surface plasmon resonance.
    J. Biol. Rhythms, 2011. 26(2): p. 91-8
  127. Dong MA,Farr
    Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(17): p. 7241-6
  128. Farinas B,Mas P
    Histone acetylation and the circadian clock: a role for the MYB transcription factor RVE8/LCL5.
    Plant Signal Behav, 2011. 6(4): p. 541-3
  129. Rawat R, et al.
    REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock.
    PLoS Genet., 2011. 7(3): p. e1001350
  130. Li G, et al.
    Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis.
    Nat. Cell Biol., 2011. 13(5): p. 616-22
  131. Miyata K,Calvi
    Suppression of late-flowering and semi-dwarf phenotypes in the Arabidopsis clock mutant lhy-12;cca1-101 by phyB under continuous light.
    Plant Signal Behav, 2011. 6(8): p. 1162-71
  132. Sellaro R,Yanovsky MJ,Casal JJ
    Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis.
    Plant J., 2011. 68(5): p. 919-28
  133. McClung CR
    The photomorphogenic protein, DE-ETIOLATED 1, is a critical transcriptional corepressor in the central loop of the Arabidopsis circadian clock.
    Mol. Cell, 2011. 43(5): p. 693-4
  134. Lau OS, et al.
    Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock.
    Mol. Cell, 2011. 43(5): p. 703-12
  135. Sellaro R,Pac
    Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Mol Plant, 2012. 5(3): p. 619-28
  136. Gendron JM, et al.
    Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(8): p. 3167-72
  137. Mulekar JJ,Huq E
    Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis?
    Plant Signal Behav, 2012. 7(2): p. 292-4
  138. Pokhilko A, et al.
    The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops.
    Mol. Syst. Biol., 2012. 8: p. 574
  139. James AB, et al.
    Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
    Plant Cell, 2012. 24(3): p. 961-81
  140. Seo PJ, et al.
    Targeted inactivation of transcription factors by overexpression of their truncated forms in plants.
    Plant J., 2012. 72(1): p. 162-72
  141. Seo PJ, et al.
    A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis.
    Plant Cell, 2012. 24(6): p. 2427-42
  142. Song HR,Noh YS
    Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci.
    Mol. Cells, 2012. 34(3): p. 279-87
  143. Park MJ,Seo PJ,Park CM
    CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis.
    Plant Signal Behav, 2012. 7(9): p. 1194-6
  144. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
  145. Yon F, et al.
    Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata.
    BMC Plant Biol., 2012. 12: p. 172
  146. Kim MY,Shin JH,Kang YJ,Shim SR,Lee SH
    Divergence of flowering genes in soybean.
    J. Biosci., 2012. 37(5): p. 857-70
  147. Hemmes H,Henriques R,Jang IC,Kim S,Chua NH
    Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms.
    Plant Cell Physiol., 2012. 53(12): p. 2016-29
  148. Chen C, et al.
    PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants.
    PLoS ONE, 2012. 7(11): p. e46596
  149. Chen YY, et al.
    Iron is involved in the maintenance of circadian period length in Arabidopsis.
    Plant Physiol., 2013. 161(3): p. 1409-20
  150. Pokhilko A,Mas P,Millar AJ
    Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs.
    BMC Syst Biol, 2013. 7: p. 23
  151. Gould PD, et al.
    Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures.
    Mol. Syst. Biol., 2013. 9: p. 650
  152. Schmal C,Reimann P,Staiger D
    A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.
    PLoS Comput. Biol., 2013. 9(3): p. e1002986
  153. Cui X, et al.
    Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.
    Plant Physiol., 2013. 162(2): p. 897-906
  154. Zhang C, et al.
    Crosstalk between the circadian clock and innate immunity in Arabidopsis.
    PLoS Pathog., 2013. 9(6): p. e1003370
  155. Kusakina J,Gould PD,Hall A
    A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield.
    Plant Cell Environ., 2014. 37(2): p. 327-40
  156. Kim Y, et al.
    Balanced nucleocytosolic partitioning defines a spatial network to coordinate circadian physiology in plants.
    Dev. Cell, 2013. 26(1): p. 73-85
  157. Karayekov E,Sellaro R,Legris M,Yanovsky MJ,Casal JJ
    Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation.
    Plant Cell, 2013. 25(8): p. 2892-906
  158. Higham CF,Husmeier D
    A Bayesian approach for parameter estimation in the extended clock gene circuit of Arabidopsis thaliana.
    BMC Bioinformatics, 2013. 14 Suppl 10: p. S3
  159. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  160. Qian H, et al.
    The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana.
    J. Plant Physiol., 2014. 171(5): p. 92-8
  161. McClung CR
    Wheels within wheels: new transcriptional feedback loops in the Arabidopsis circadian clock.
    F1000Prime Rep, 2014. 6: p. 2
  162. Gulledge AA,Vora H,Patel K,Loraine AE
    A protocol for visual analysis of alternative splicing in RNA-Seq data using integrated genome browser.
    Methods Mol. Biol., 2014. 1158: p. 123-37
  163. Xie Q, et al.
    LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator.
    Plant Cell, 2014. 26(7): p. 2843-57
  164. Hsiao AS, et al.
    Gene expression in plant lipid metabolism in Arabidopsis seedlings.
    PLoS ONE, 2014. 9(9): p. e107372
  165. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  166. Xing H, et al.
    LNK1 and LNK2 recruitment to the evening element require morning expressed circadian related MYB-like transcription factors.
    Plant Signal Behav, 2015. 10(3): p. e1010888
  167. Litthauer S,Battle MW,Lawson T,Jones MA
    Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light.
    Plant J., 2015. 83(6): p. 1034-45
  168. Flis A, et al.
    Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure.
    Open Biol, 2016.
  169. Adams S,Manfield I,Stockley P,Carré IA
    Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions.
    PLoS ONE, 2015. 10(12): p. e0143943
  170. Kamioka M, et al.
    Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.
    Plant Cell, 2016. 28(3): p. 696-711
  171. Baduel P,Arnold B,Weisman CM,Hunter B,Bomblies K
    Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa.
    Plant Physiol., 2016. 171(1): p. 437-51
  172. Park MJ,Kwon YJ,Gil KE,Park CM
    LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    BMC Plant Biol., 2016. 16(1): p. 114
  173. Nitschke S, et al.
    Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.
    Plant Cell, 2016. 28(7): p. 1616-39
  174. Higashi T,Aoki K,Nagano AJ,Honjo MN,Fukuda H
    Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light-Dark Conditions.
    Front Plant Sci, 2016. 7: p. 1114
  175. Marshall CM,Tartaglio V,Duarte M,Harmon FG
    The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.
    Plant Cell, 2016. 28(10): p. 2560-2575
  176. Wu JF, et al.
    LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
    Nat Commun, 2016. 7: p. 13181
  177. Wendell M, et al.
    Thermoperiodic Control of Floral Induction Involves Modulation of the Diurnal FLOWERING LOCUS T Expression Pattern.
    Plant Cell Physiol., 2017. 58(3): p. 466-477
  178. Woloszynska M, et al.
    The Elongator complex regulates hypocotyl growth in darkness and during photomorphogenesis.
    J. Cell. Sci., 2019.
  179. Li Z,Bonaldi K,Uribe F,Pruneda-Paz JL
    A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis.
    Curr. Biol., 2018. 28(4): p. 630-639.e4
  180. James AB,Sullivan S,Nimmo HG
    Global spatial analysis of Arabidopsis natural variants implicates 5'UTR splicing of LATE ELONGATED HYPOCOTYL in responses to temperature.
    Plant Cell Environ., 2018. 41(7): p. 1524-1538
  181. James AB, et al.
    How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY).
    Plant Cell Environ., 2018. 41(7): p. 1539-1550
  182. Wang ZY,Tobin EM
    Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression.
    Cell, 1998. 93(7): p. 1207-17
  183. Schaffer R, et al.
    The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
    Cell, 1998. 93(7): p. 1219-29